Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Pr. Philippe Polomé, Université Lumière Lyon 2

M2 EcoFi

2016 - 2017

Overview of Ch. 2

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson-Hsiao estimator

Dynamic Panel Data model DPD

Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson–Hsiao estimator ynamic Panel Data model DPD Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Introduction

- The previous chapter presented variants of the linear panel data model with
 - ▶ a FE or RE (random) intercept and
 - strongly exogenous regressors

 $E[\mathbf{\epsilon}_{it}|\mathbf{\alpha}_{i}, x_{i1}, ..., x_{iT}] = 0, \ t = 1, ..., T$

- Linear models may relax the strong exogeneity assumption via
 - endogenous regressors $E[\varepsilon_{it}|x_{ijt}] \neq 0$ for some j
 - lagged dependent variables as regressors
 - endogenous in a panel context with autocorrelation
 - or because of estimation see later
- Dynamic linear panels treat the 2nd case only
 - But use applications of the GMM estimator
 - \blacktriangleright That may also be used to address the 1^{st} case
 - We will go through the general GMM first

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments GMM in Cross-Sections

Outline

Generalized Method of Moments GMM in Cross-Sections

GMM in Linear Panel Anderson–Hsiao estimator Dynamic Panel Data model DPD Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model

Analogy Principle

- GMM estimators based on the analogy principle
 - population moment conditions
 - lead to sample moment conditions
 - are used to estimate parameters
- Classic example of MM
 - estimation of the population mean when y is iid with mean μ
- In the population $E[y \mu] = 0$ by definition
 - ▶ Replacing $E[\cdot]$ for the population by $N^{-1} \sum_{i=1}^{N} (\cdot)$ for the sample yields the corresponding sample moment :

$$\frac{1}{N}\sum_{i=1}^{N}\left(y_{i}-\mu\right)=0$$

• Solving for μ leads to the estimator $\hat{\mu}_{MM} = N^{-1} \sum_{i=1}^{N} y_i = \bar{y}$

The MM estimator of the population mean is the sample mean

Linear Cross-Section Regression

• linear regression model $y = x'\beta + u$

- x and β are $K \times 1$ vectors
- ▶ Suppose *E* [*u*|*x*] = 0
 - law of iterated expectations
 - K unconditional moment conditions E[xu] = 0
 - Thus, when the error has conditional mean zero / is "exogenous" / orthogonal

$$E\left[x\left(y-x'\beta\right)
ight]=0$$

MM estimator = solution to the corresponding K sample moment conditions

$$\frac{1}{N}\sum_{i=1}^{N}x_{i}\left(y_{i}-x_{i}^{'}\beta\right)=0$$

$$\widehat{\beta}_{MM} = \left(\sum_{i} x_{i}' x_{i}\right)^{-1} \sum_{i} x_{i}' y_{i}$$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments GMM in Cross-Sections

Linear IV

- Endogeneity : $E[u|x] \neq 0$
- Assume we have instruments z such that E[u|z] = 0 and
 - The instruments are good
 - strongly correlated with the regressors
 - dim(z) = dim(x): exactly one instrument per regressor
 - exactly-identified model
- Thus, E[u|z] = 0 provides K sample moment conditions

• Then
$$\hat{\beta}_{MM} = \left(\sum_{i} z'_{i} x_{i}\right)^{-1} \sum_{i} z'_{i} y_{i}$$
 is consistent

• while
$$\hat{\beta}_{OLS} = \left(\sum_{i} x'_{i} x_{i}\right)^{-1} \sum_{i} x'_{i} y_{i}$$
 is inconsistent

- $\hat{\beta}_{MM}$ is the Instrumental Variable IV estimator
 - an application of MM estimation

Additional Moment Restrictions

- additional moments/instruments can improve efficiency
 - since they add information to the estimator
 - that is relevant (correlated to X)
 - but requires adaptation of MM
- ► Consider that dim(z) > dim(x) : more instruments than regressors
 - The model is said over-identified
 - Which ones do we take ? Any selection is arbitrary
 - let z_1 and z_2 be subsets of z such that $dim(z_1) = dim(z_2) = dim(x)$

• Then,
$$\hat{\beta}_{MM1} = (Z'_1X)^{-1}Z'_1Y \neq (Z'_2X)^{-1}Z'_2Y = \hat{\beta}_{MM2}$$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments GMM in Cross-Sections

Additional Moment Restrictions 2

• If we write
$$E\left[Z\left(y-X'\beta\right)\right]$$

- the moments conditions as above
- there are more conditions than parameters to estimate
- ► The GMM estimator chooses $\hat{\beta}$ to make the vector of sample moment conditions $\frac{1}{N} \sum_{i} z_i \left(y_i x'_i \beta \right)$ as small as possible in quadratic terms

That is $\hat{\beta}_{GMM}$ minimizes :

$$Q_{N}\left(\beta\right) = \left[\frac{1}{N}\sum_{i}z_{i}\left(y_{i}-x_{i}^{'}\beta\right)\right]^{'}\mathbf{W}_{N}\left[\frac{1}{N}\sum_{i}z_{i}\left(y_{i}-x_{i}^{'}\beta\right)\right]$$

where \mathbf{W}_N is a weighting matrix

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments GMM in Cross-Sections

Additional Moment Restrictions 3

- How to choose W_N ?
 - Let dim(z) = r; \mathbf{W}_N is $r \times r$, sdp and does not depend on β
 - Different choices of W_N lead to different estimators that are all consistent
 - but have different variances when r > k
 - GMM specifies the **optimal** choice of weighting matrix \mathbf{W}_N
 - depending on the case at hand (number of instruments, heteroskedasticity, autocorrelation)
 - such that $\hat{\beta}_{GMM}$ has the smallest asymptotic variance
- The exact definition of W_N depends on the particular case
 - 3 cases for panel

Outline

Generalized Method of Moments GMM in Cross-Sections GMM in Linear Panel Anderson-Hsiao estimator

Dynamic Panel Data model DPD Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

The Usual Panel Data Model

• Individual-specific effect α_i model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \epsilon_{it} \tag{1}$$

- x_{it} may include
 - both time-varying and time-invariant components
 - an intercept
- Some components of the regressors x_{it} are now assumed to be endogenous
 - $E[\mathbf{x}_{it}(\alpha_i + \epsilon_{it})] \neq 0$
 - This leads to a re-definition of what is FE & RE in the next slide

Random and Fixed Effects Panel with Endogeneity

• We call **RE** if \exists instruments Z_i s.t.

$$E\left[Z'_{is}\left(\alpha_{i}+\epsilon_{it}\right)
ight]=0$$
 \forall period s

- ► Then GMM is applied following the formulas below
- ► FE if
 - it is possible only to find instruments s.t. $E\left[Z'_{is}\epsilon_{it}\right] = 0 \forall s$
 - **but** $E\left[Z'_{is}\alpha_i\right] \neq 0$ for some s at least
 - Then $\dot{\alpha_i}$ must be eliminated by differencing
 - & only the coefficients of the time-varying regressors are identified

Simplification for presentation

- no individual-specific effect α_i
- x_{it} includes only current-period variable
 - The linear panel model becomes

$$y_{it} = x_{it}\beta + u_{it} \tag{2}$$

Stack (bold) all T observations for the *i*th individual

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{u}_i \tag{3}$$

- The estimators presented below
 - may however include individual-specific effects
 - Via a data transformation as in Ch1

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

Panel GMM Moment Conditions

- Assume a $T \times r$ matrix of instruments Z_i
 - $r \ge K$ is the number of instruments
 - that satisfy the r moment conditions :

$$E\left[\mathbf{Z}_{i}^{'}\mathbf{u}_{i}\right]=0$$
(4)

 The GMM estimator based on these moment conditions minimizes a quadratic form as above : β̂_{PGMM} =

$$\left[\left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i}\right) \mathbf{W}_{N}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{X}_{i}\right)\right]^{-1} \left(\sum_{i} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i}\right) \mathbf{W}_{N}\left(\sum_{i} \mathbf{Z}_{i}^{\prime} \mathbf{y}_{i}\right)$$

Consistency of this estimator if (4) holds

Case 1. Just-Identified Panel GMM

- Different weighting matrices W_N lead to different GMM estimators
- Except in the just-identified case of r = K, that is dim(z) = dim(x)
 - Exogenous regressors serve as their own instruments
- In this case $\hat{\beta}_{PGMM}$ simplifies to the IV estimator for any W_N

$$\hat{\beta}_{IV} = [Z'X]^{-1}Z'y$$

- In the case that all the x are exogenous
 - We can have X = Z and so $\hat{\beta}_{PGMM} = \hat{\beta}_{OLS}$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

Case 2 & 3. Overidentified Panel GMM

- If in addition of the r instruments above
 - We can assume that the first lag of each regressor is uncorrelated with the current error
 - ▶ then x_{it-1} is available as **additional** instruments for x_{it}
 - weak exogeneity / predetermined instruments
- ► The model is over-identified
 - ▶ Instead of $\hat{\beta}_{IV}$, more efficient estimation is possible using Panel GMM estimators
 - Generalisation using further lags of x_t comes to mind
 - ► Clearly, we can have *x*_t endogenous while *x*_{t-1} and *x*_{t-2} pre-determined
 - so that there are more instruments than regressors, without any external instrument
 - We will discuss that in application, it is one of the main strengths of panel

2 optimal Over-identified PGMM Estimators

Assume no heteroskedasticity and no serial correlation

$$\hat{\beta}_{2SLS} = \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} \right]^{-1} \mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{y}$$

Sieie xtivreg see below

No such assumption (robust)

$$\boldsymbol{\flat} \ \hat{\beta}_{2SGMM} = \left[\mathbf{X}' \mathbf{Z} \hat{\mathbf{S}}^{-1} \mathbf{Z}' \mathbf{X} \right]^{-1} \mathbf{X}' \mathbf{Z} \hat{\mathbf{S}}^{-1} \mathbf{Z}' \mathbf{y}$$

- $\mathbf{\hat{S}} = \frac{1}{N} \sum_{i} \mathbf{Z}'_{i} \mathbf{\hat{u}}_{i} \mathbf{\hat{u}}'_{i} \mathbf{Z}_{i}$ is a White-type robust consistent estimate for the $r \times r$ matrix $\mathbf{S} = plim \frac{1}{N} \sum_{i} \mathbf{Z}'_{i} \mathbf{u}_{i} \mathbf{u}'_{i} \mathbf{Z}_{i}$
- Two-step GMM since a first-step consistent estimator of β such as β_{2SLS} is needed to form the residuals

 a_i = **y**_i **X**_iβ_{2SLS} used to compute **Ŝ**
 - ▶ **STATE** We'll see later in applications

2SLS reminder

- What does 2-Stage Least-Squares mean ?
 - A reminder in cross-section context for simplicity
- 2SLS is a particular application of IV
 - That leads to a natural generalization from MM to GMM

Instrumentation equation

• Let the structural equation $Y = X\beta + \epsilon$

- Assume that in X, x_k is endogenous
 - assume we have one instrument z for x_k
- ▶ The instrument matrix is Z,
 - ▶ identical to X except for the last column in which x_k is replaced by z
- ► The instrumentation equation

$$x_k = \delta_0 + \delta_1 x_1 + \ldots + \delta_{k-1} x_{k-1} + \delta_k z + \mu = Z\delta + \mu$$

- Estimated by LS, the fitted values of x_k are
 - $\hat{\mathbf{x}}_{k} = \hat{\delta}_{0} + \hat{\delta}_{1}\mathbf{x}_{1} + \ldots + \hat{\delta}_{k-1}\mathbf{x}_{k-1} + \hat{\delta}_{k}\mathbf{z} = Z\hat{\delta}$

• with
$$\hat{\delta} = (Z'Z)^{-1}Z'x_k$$

- Thus, \hat{x}_k is a valid instrument for x_k
 - as long as z is a valid instrument for x_k
 - and the other regressors are exogenous

2-Step Least-Squares

• Write \hat{X} , the X mtx in which x_k has been replaced by \hat{x}_k

• The IV estimator using
$$\hat{X}$$
 is $\hat{\beta}_{IV} = \left(\hat{X}'X\right)^{-1}\hat{X}'Y$

- ► Might be a little better than (Z'X)⁻¹ Z'Y since the correlation(x̂_k, x_k) ≥ correlation(z, x_k)
- But the main advantage will come later
- This IV estimator is equivalent to an OLS estimation MCO in 2 steps – 2SLS :
- 1. Estimate by OLS the instrumentation eq. $x_k = Z\delta + \mu$
- 2. Replace X by \hat{X} in the structural eq. $Y = \pi \hat{X} + \nu$
 - Estimate by OLS

•
$$\hat{\pi}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y$$

• Warning: $(\hat{X}'\hat{X})^{-1}$ and NOT $(\hat{X}'X)^{-1}$ as in $\hat{\beta}_{IV}$

• Below, it is shown that $\hat{\pi}_{2SLS} = \hat{\beta}_{IV} = (\hat{X}'X)^{-1} \hat{X}'Y$

$$\hat{\pi}_{2SLS} = \hat{\beta}_{IV} = \left(\hat{X}'X\right)^{-1}\hat{X}'Y$$
: Proof

First we proove that
$$\hat{X} = Z \left(Z' Z \right)^{-1} Z' X$$

- Remember
 - Z is X in which x_k is replaced by z, the instrument for x_k
 - $(Z'Z)^{-1}Z'x_k = \hat{\delta}$ the LS estimate of the instrumentation eq.

• Consider
$$\hat{X} = Z \left(Z' Z \right)^{-1} Z' \left(\begin{array}{cc} X_{-k} & x_k \end{array} \right)$$

• So
$$\hat{X} = \left(Z \left(Z' Z \right)^{-1} Z' X_{-k} \hat{x}_{k} \right)$$

• So, the last col. of
$$\hat{X}$$
 is $\hat{x}_k = Z\hat{\delta}$

- ► Take any other col of X, x_j
- Then the jth col of \hat{X} is also the jth col of Z and is $Z\left(Z'Z\right)^{-1}Z'x_{j}$

• Consider $\left(Z'Z\right)^{-1}Z'x_j = \hat{\gamma}_j$

- This is like the OLS estimate of the regression of x_j on itself & the other regressors
- Then, the adjustment is perfect, the residuals are zero

$$\hat{\pi}_{2SLS} = \hat{eta}_{IV} = \left(\hat{X}'X
ight)^{-1}\hat{X}'Y$$
 : Proof

• This shows that
$$\hat{X} = Z \left(Z' Z \right)^{-1} Z' X$$

▶ Then, it is easy to show that

$$\hat{\pi}_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'Y$$

$$= (X'Z(Z'Z)^{-1}Z'(Z(Z'Z)^{-1}Z'X))^{-1}\hat{X}'Y$$

$$= (X'Z(Z'Z)^{-1}Z'X)^{-1}\hat{X}'Y$$

$$= (\hat{X}'X)^{-1}\hat{X}'Y = \hat{\beta}_{IV}$$

2-Step Least-Squares with several instruments

- The last proof also shows the equivalence between
 - Our previous formula for $\hat{\beta}_{2SLS}$

$$\hat{\beta}_{2SLS} = \left[\mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{X} \right]^{-1} \mathbf{X}' \mathbf{Z} \left(\mathbf{Z}' \mathbf{Z} \right)^{-1} \mathbf{Z}' \mathbf{y}$$

• and the present formula $(\hat{X}'X)^{-1}\hat{X}'Y$

- (Except that I am not fully consistent with notation)
- ▶ Therefore 2SLS is actually IV
 - ▶ in which the instrument x̂_k is obtained from an instrumentation equation with p instruments

$$x_k = \delta_0 + \delta_1 x_1 + \ldots + \delta_{k-1} x_{k-1} + \delta_{k1} z_1 + \ldots + \delta_{kp} z_p + \mu$$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

To sum up $\hat{\beta}_{PGMM}$ has 3 meanings

- 1. Just-identified case
 - # instruments = # endogenous regressors
 - $\hat{\beta}_{PGMM}$ is $\hat{\beta}_{IV}$ "one-step"
- 2. Over-identified & spherical case
 - # instruments > # endogenous regressors
 - No heteroskedasticity, no autocorrelation
 - $\hat{\beta}_{PGMM}$ is $\hat{\beta}_{2SLS}$ "2-step"
 - 2.1 LS estimation of the instrumentation equation(s)
 - 2.2 IV estimation using these results
- 3. Over-identified general case
 - $\hat{\beta}_{PGMM}$ is $\hat{\beta}_{2SGMM}$ "3-step"
 - Same 2 steps as $\hat{\beta}_{2SLS}$, construct the weighting mtx **\$**
 - Use $\hat{\mathbf{S}}^{-1}$ in the general $\hat{\beta}_{PGMM}$ formula

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

Panel-Robust Statistical Inference

- $\hat{\beta}_{PGMM}$ is asymptotically normal
 - with a complicated asymptotic variance matrix
 - A consistent estimate of that matrix exists
 - conditionnally on a choice for \mathbf{W}_N
 - and if independence over i is assumed
- A White-type robust estimate exists
 - It yields panel-robust standard errors allowing for both heteroskedasticity and correlation over time
 - That may not be implemented in many packages
 - ► Not in **State** for the general case
 - but for some special cases
- Alternatively, the panel bootstrap could be used

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Anderson–Hsiao estimator

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson-Hsiao estimator Dynamic Panel Data model DPD Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model Model

• Consider again the individual-specific effect α_i model (1)

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \epsilon_{it}$$

where some components of x_{it} are assumed to be **endogenous**

- $E[\mathbf{x}_{it}(\alpha_i + \epsilon_{it})] \neq 0$
- To simplify, take only one regressor $\mathbf{x}_{it} \rightarrow x_{it}$
- The case when the x_{it} regressor is a lag of the dependant $x_{it} \rightarrow y_{i,t-1}$
 - is discussed in details in the next section
 - ▶ So in this section, we focus on $x_{it} \neq y_{i,t-1}$

IV estimation

- Consider using $x_{i,t-1}$ as instrument for x_{it}
 - ► x_{i,t-1} "good" instrument since correlated with x_{it}
 - Generally, we are willing to assume some autocorrelation of the x_i
 - Dangerous if x_i is (per individual) I(1)
- ► $x_{i,t-1}$ valid instrument only when it is not correlated with the error $\alpha_i + \epsilon_{it}$
 - We may often assume that $x_{i,t-1}$ is uncorrelated to ϵ_{it}
 - in the sense that $x_{i,t-1}$ is **predetermined** wrt ϵ_{it}
 - When $x_{i,t-1}$ is not correlated to α_i , this is a RE model
 - Else, we are in a FE model
 - and then α_i must be eliminated by differencing as in Ch. 1

Anderson-Hsiao (AH) estimator

- ► The AH estimator essentially applies the logic of Ch. 1
 - using an IV estimator instead of a LS one
 - In all cases, it is a 2SLS estimator
- ▶ The *x*_{*i*,*t*-1} instrument is called internal
 - $x_{i,t-2}$ could also be used
 - Generally, lags of a regressor are called internal instruments
 - but external instruments, and their lags, may also be used
 - we do not consider them here
- Anderson-Hsiao is generally IV regression,
 - but Stata has a Panel implementation that is more convenient

AH estimator in **State**

- Requires a list of instruments
 - we will only give lags endogenous regressors
- Menu stat→Longitudinal→Endogenous covariates→Instrumental
- Command xtivreg : 5 different estimators
 - detailed below, except be, that is dropped

Within AH estimator: xtivreg, fe

• Within : transform model (1)

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \epsilon_{it}$$

using within :

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \beta + \epsilon_{it} - \bar{\epsilon}_i$$

- We submit y_{it} and x_{it} to State
 - The transform is automatic
- Estimate by 2SLS
 - We supply $\mathbf{x}_{i,t-1}$ as instrument
 - ► But **State** will transform everything
 - ► So that the actual instrument is $x_{i,t-1} \bar{x}_i$ for the endogenous regressors
 - So time invariant regressors cannot be analysed
 - $x_{it} \bar{x}_i$ for the exogenous ones (implicitly)

First-Differences AH estimator: xtivreg, fd

► First-Differences : transform model (1)

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \epsilon_{it}$$

using 1st diff (D1 or fd):

$$y_{it} - y_{i,t-1} = (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})' \beta + \epsilon_{it} - \epsilon_{i,t-1}$$

2SLS FD estimator

- Detailed in the next section w/ $x_{it} = y_{i,t-1}$
- ▶ but might be used in this section w/ $x_{it} \neq y_{i,t-1}$
- ▶ If the *i* are FE without serious correlation issues
 - FD 2SLS not as efficient as within 2SLS
- If no endogenous variable is a lagged dependent variable
 - and the i are iid RE
 - then RE 2SLS is more efficient than FD 2SLS
- However, when these conditions fails, the FD 2SLS may be the only consistent estimator
 - e.g. with a lagged dependent variable

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Generalized Method of Moments

Random Effects AH estimator : xtivreg, re

Random effects: transform model (1)

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \epsilon_{it}$$

using the RE transformation of Ch. 1 :

$$y_{it} - \hat{\lambda} \bar{y}_i = \left(1 - \hat{\lambda}\right) \mu + \left(x_{it} - \hat{\lambda} \bar{x}_i\right)' \beta + \nu_{it}$$

2SLS RE, two implementations

- G2SLS from Balestra and Varadharajan-Krishnakumar (default)
- EC2SLS from Baltagi
- I do not detail, we use the default
- Application is postponed to next section

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson-Hsiao estimator

Dynamic Panel Data model DPD

Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model
Lagged dependent variable

- Regressors include the dependent variable lagged once
 - That is the dynamic panel data model DPD

$$y_{it} = \gamma y_{i,t-1} + \mathbf{x}'_{it}\beta + \alpha_i + \epsilon_{it}$$
(5)

- Assume $|\gamma| < 1$
 - In applications, that can be tested using (panel) unit-root tests
 - $\neg R$ unit root, then y_{it} is a random walk
 - Therefore, inference is invalid
 - Estimation may be inconsistent as LS/IV assumptions are not satisfied
 - We do not deal with this case in this course

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Interpreting a Dynamic Panel

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson-Hsiao estimator

Dynamic Panel Data model DPD Interpreting a Dynamic Panel

First-differences Model Anderson–Hsiao estimator Arellano-Bond Model Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Interpreting a Dynamic Panel

Correlation Between y_{it} and $y_{i,t-1}$

- Time-series correlation in y_{it}
 - is induced directly by $y_{i,t-1}$
 - in addition to the indirect effect via α_i
 - These two causes lead to different interpretations of correlation over time
- From (5) with $\beta = 0$

► so that
$$y_{it} = \gamma y_{i,t-1} + \alpha_i + \epsilon_{it}$$

$$Cor [y_{it}, y_{i,t-1}] = Cor [\gamma y_{i,t-1} + \alpha_i + \epsilon_{it}, y_{i,t-1}]$$

$$= \gamma Cor [y_{i,t-1}, y_{i,t-1}] + Cor [\alpha_i, y_{i,t-1}]$$

$$= \gamma + \frac{1 - \gamma}{1 + (1 - \gamma) \sigma_{\epsilon}^2 / (1 + \gamma) \sigma_{\alpha}^2}$$

- The second equality assumes $Cor[\epsilon_{it}, y_{i,t-1}] = 0$
 - $y_{i,t-1}$ is predetermined wrt ϵ_{it}
- The third equality is obtained after some algebra
 - ▶ for the case of RE with $\epsilon_{it} \sim iid \left[0, \sigma_{\epsilon}^2\right] \& \alpha_{it} \sim iid \left[0, \sigma_{\alpha}^2\right]$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Interpreting a Dynamic Panel

2 possible reasons for correlation between y_{it} and $y_{i,t-1}$

True state dependence

- ▶ When correlation over time is due to the causal mechanism that y_{i,t-1} last period determines y_{it} this period
- This dependence is relatively large
 - if the individual effect $\alpha_i \simeq 0$
 - or more generally when σ_{α}^2 is small relative to σ_{ϵ}^2 as then $Cor[y_{it}, y_{i,t-1}] \simeq \gamma$
- ► Spurious correlation between y_{it} and y_{i,t-1} arises even if there is no causal mechanism
 - due to unobserved heterogeneity
 - so γ = 0
 - ▶ but nonetheless $\hat{\gamma}_{OLS} \neq 0$ because $Cor\left[y_{it}, y_{i,t-1}\right] = \sigma_{\alpha}^2 / \left(\sigma_{\alpha}^2 + \sigma_{\epsilon}^2\right)$ as in Ch. 1
 - also due to time-series issues: y_{it} is I(1)
 - Not covered in this Ch.

True State Dependence & Unobserved Heterogeneity

- Both extremes permit the correlation to be close to 1
 - \blacktriangleright because either $\gamma \rightarrow 1 \text{ or } \sigma_{\alpha}^2/\sigma_{\epsilon}^2 \rightarrow 0$
 - However, these 2 explanations give different policy implications
- True state dependence explanation
 - Earnings y_{it} are continuously high (or low) over time even after controlling for regressors x_{it} because future earnings are determined by past earnings and γ is large
- Unobserved heterogeneity explanation
 - Actually γ is small, but important variables have been omitted from x_{it}, leading to a high α_i in each time period
 - So that $\hat{\gamma}_{LS}$ appears high
- That is, are people poor (or rich) because
 - They were poor (or rich)?
 - In that case, poverty may be addressed by transfering money
 - Or they have individual characteristics that make them poor?
 - In that case, poverty might be better addressed by education

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Interpreting a Dynamic Panel

Inconsistency of Ch. 1 Estimators

- ► When the regressors include lagged dependent variables
 - All the estimators from Ch.1 are inconsistent
- **OLS** of y_{it} on $y_{i,t-1}$ and x_{it}
 - Error term $(\alpha_i + \epsilon_{it})$, correlated $y_{i,t-1}$ through α_i
- ▶ Within estimator : $y_{it} \bar{y}_i$ on $(y_{i,t-1} \bar{y}_i)$ and $(\mathbf{x}_{it} \bar{\mathbf{x}}_i)$ with error $(\epsilon_{it} \bar{\epsilon}_i)$
 - $y_{i,t-1}$ is correlated with $\epsilon_{i,t-1}$ and hence $\overline{\epsilon}_i$
 - Thus, within creates a correlation between regressor and error
- ► Inconsistency also for the **RE** estimator from Ch 1

• since RE is based on the transformation $y_{it} - \hat{\lambda} \bar{y}_i$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Interpreting a Dynamic Panel

Nickel bias

- \blacktriangleright It has been shown that the bias $\hat{\gamma}-\gamma$
 - such correlation generates
 - \blacktriangleright on the within estimator of γ
 - in the DPD model $y_{it} = \gamma y_{i,t-1} + \mathbf{x}'_{it}\beta + \alpha_i + \epsilon_{it}$
 - is approximately $-(1+\gamma)/(1+T)$ as $n \to \infty$
 - It disappears with long series
 - But can be important when T is small
 - e.g. with T = 10 and $\gamma = 0.5$, the bias is -0.167, about $^{1/3}$ of the parameter
- Additional regressors
 - or additional obs.
 - do not remove the bias
 - If the additional regressors are correlated with y_{t-1}
 - Their estimated coef will also be inconsistent

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Dynamic Panel Data model DPD

First-differences Model

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson–Hsiao estimator

Dynamic Panel Data model DPD Interpreting a Dynamic Panel First-differences Model

Anderson–Hsiao estimator Arellano-Bond Model Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
First-differences Model

First-differences Model

First-difference the dynamic model (5), t = 2, ..., T

$$y_{it} - y_{i,t-1} = \gamma \left(y_{i,t-1} - y_{i,t-2} \right) + \left(x_{it} - x_{i,t-1} \right)' \beta + \left(\epsilon_{it} - \epsilon_{i,t-1} \right)$$
(6)

- OLS inconsistent because $y_{i,t-1}$ is correlated with $\epsilon_{i,t-1}$
 - ▶ so regressor $(y_{i,t-1} y_{i,t-2})$ correlated with error $(\epsilon_{it} \epsilon_{i,t-1})$

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
First-differences Model

First-difference estimator

First-difference estimator of this model is OLS on

$$\begin{aligned} (y_{it} - y_{i,t-1}) - (y_{i,t-1} - y_{i,t-2}) &= \gamma \left[(y_{i,t-1} - y_{i,t-2}) - (y_{i,t-2} - y_{i,t-3}) \right] \\ &+ (\epsilon_{it} - \epsilon_{i,t-1}) - (\epsilon_{i,t-1} - \epsilon_{i,t-2}) \end{aligned}$$

- The x regressors have been omitted for simplicity
 - This D1 estimator is still inconsistent
 - as the regressor is correlated with error

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models Dynamic Panel Data model DPD

Anderson–Hsiao estimator

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson–Hsiao estimator

Dynamic Panel Data model DPD

Interpreting a Dynamic Panel First-differences Model

Anderson-Hsiao estimator

Arellano-Bond Model

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Anderson-Hsiao estimator

IV estimation

- We have seen the Anderson–Hsiao (AH) IV estimator in the previous section
 - Essentially, use the linear panel transformations
 - and apply a 2SLS estimator using the lag of the regressors as intruments
 - ▶ Here, we apply it to the DPD model (5)

$$y_{it} = \gamma y_{i,t-1} + \mathbf{x}_{it}^{'} \beta + \alpha_i + \epsilon_{it}$$

- Consider using $y_{i,t-2}$ as instrument for $y_{i,t-1}$
 - $y_{i,t-2}$ "good" instrument since correlated with $y_{i,t-1}$
 - because of unobserved heterogeneity or true state dependance or both
 - $y_{i,t-2}$ valid instrument only when it is not correlated with the error $\alpha_i + \epsilon_{it}$
 - That is not the case since $y_{i,t-2}$ always contains α_i
 - That is the difference with the previous section
- Thus the AH estimator must be one that removes α_i

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Anderson-Hsiao estimator

AH (IV) estimation of the within model

Within : transform the DPD model (5)

$$y_{it} = \alpha_i + y_{i,t-1}\gamma + \mathbf{x}'_{it}\beta + \epsilon_{it}$$

using within (I remove the x_{it} for simplicity):

$$y_{it} - \bar{y}_i = (y_{i,t-1} - \bar{y}_i)\gamma + \epsilon_{it} - \bar{\epsilon}_i$$

• Clearly, $y_{i,t-2}$, or $y_{i,t-2} - \bar{y}_i$

- is an invalid instrument in such a model
 - since $\epsilon_{i,t-2}$ from the instrument is present in $\overline{\epsilon}_i$ from the error term

AH (IV) estimation of the first-differences model

Reconsider the first-difference dynamic model (6)

$$y_{it}-y_{i,t-1} = \gamma \left(y_{i,t-1}-y_{i,t-2}\right) + \left(\mathbf{x}_{it}-\mathbf{x}_{i,t-1}\right)' \beta + \left(\epsilon_{it}-\epsilon_{i,t-1}\right)$$

• Use $y_{i,t-2}$ as instrument for $(y_{i,t-1} - y_{i,t-2})$

- $y_{i,t-2}$ valid instrument since not correlated with $(\epsilon_{it} \epsilon_{i,t-1})$
- ▶ assuming the errors (ϵ_{it} − ϵ_{i,t−1}) are not (too much) serially correlated

y_{i,t-2} "good" instrument since correlated with (*y_{i,t-1} − y_{i,t-2}*)
 (*y_{i,t-2} − y_{i,t-3}*) would also be a good instrument

- Even if the errors $(\epsilon_{it} \epsilon_{i,t-1})$ are serially correlated (AR(1))
 - using the third & fourth lags may still be a valid strategy

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
Dynamic Panel Data model DPD
Anderson-Hsiao estimator

Siene application: command xtivreg, fd

- fd for first difference (D1)
 - The only AH estimator applicable in DPD model
- Arellano-Bond data set
 - Ioaded from Ch.1 & saved as abdata.dta
 - Year = t, n = log of employment, w = log of real wage, k = log of gross capital, ys = log of industry output, unit = firm index (i)
 - Panel structure : xtset unit year, yearly

Commands in the ab.do file

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Anderson–Hsiao estimator

Anderson-Hsiao estimator

- ► xtivreg n l2.n l(0/1).w l(0/2).(k ys) yr1981-yr1984 (l.n = l3.n), fd
 - ▶ l2.n (or L2.n) is a direct way to write lag 2 of y, that is $y_{i,t-2}$
 - I(0/1).w "creates" 2 variables
 - w itself (lag "0")
 - lag 1 of w
 - I(0/2).(k ys) "creates" 6 variables
 - yr1981-yr1984 includes 4 time dummies
 - (I.n = I3.n) indicates the list of instruments
 - ► l.n is an endog. regressor
 - I3.n is its instrument, but is not a regressor
 - Additional endog regr. / instruments are inserted after a space
 - All the regressors not specified here are treated as exogenous/predetermined
- ▶ In the output however, the D1 appear
 - \blacktriangleright that is the first diff Δ caused by the fd option

Estimation results : xtivreg, fd

Variable	Coefficient	(Std. Err.)			
LD.n	1.423	(1.583)			
L2D.n	-0.165	(0.165)			
D.w	-0.752	(0.177)			
LD.w	0.963	(1.087)			
D.k	0.322	(0.147)			
LD.k	-0.325	(0.580)			
L2D.k	-0.095	(0.196)			
D.ys	0.766	(0.370)			
LD.ys	-1.362	(1.157)			
L2D.ys	0.321	(0.544)			
D.yr1981	-0.057	(0.043)			
D.yr1982	-0.088	(0.071)			
D.yr1983	-0.106	(0.109)			
D.yr1984	-0.117	(0.152)			
Intercept	0.016	(0.034)			

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

└─Arellano-Bond Model

Outline

Generalized Method of Moments

GMM in Cross-Sections GMM in Linear Panel Anderson–Hsiao estimator

Dynamic Panel Data model DPD

Interpreting a Dynamic Panel First-differences Model Anderson–Hsiao estimator Arellano-Bond Model

More Efficient Estimation of First-differences Model

- Using the IV estimator with only the y_{i,t-2} instrument is a just-identified estimator
 - ► It requires availability of **3** periods of data for each individual
- Using additional lags of the dependent variable as instruments
 - is more efficient
 - **Overidentified**, estimation by 2SLS (AH)
 - or possibly 2SGMM to account for non spherical disturbances

Which additional lags ?

- With the AH estimator,
 - the number of instruments is "decided upon"
 - e.g. we use the first 2 lags
- Reconsider the first-difference dynamic model (6)

$$y_{it}-y_{i,t-1} = \gamma \left(y_{i,t-1}-y_{i,t-2}\right) + \left(\mathbf{x}_{it}-\mathbf{x}_{i,t-1}\right)' \beta + \left(\epsilon_{it}-\epsilon_{i,t-1}\right)$$

rewritten as $\Delta y_{it} = \gamma \Delta y_{i,t-1} + \Delta \mathbf{x}'_{it} \beta + \Delta \epsilon_{it}$

- ► The AH D1 estimator uses $y_{i,t-2}$ as instrument for $\Delta y_{i,t-1}$
 - $y_{i,t-3}$ could also be used, then we **loose** a third period of data
 - The matrix of instruments Z is then

$$\begin{pmatrix} y_{i,t-2} & y_{i,t-3} & \Delta \mathbf{x}_{it} \end{pmatrix}$$

 There is then a trade-off between the number of instruments and the number of periods

Arellano-Bond view of the instruments

- In period 3 only y_{i1} is available as an instrument,
 - but in period 4 both y_{i1} and y_{i2} would be available,
 - and so on
- Arellano & Bond suggest using one set of instruments per period
- ► To avoid loosing periods of data by introducing further periods
 - Arellano & Bond use zeros outside the period
 - The zeros are not data, but the resulting instruments still satisfy the conditions (uncorrelated to errors, correlated to regressor)
- Each instrument is then relatively weak
 - As the zeros damage the correlation
 - But overall, we use more information in this way
 - So we increase efficiency

Arellano-Bond matrix of instruments

The resulting Z_i matrix of instruments :

$$\mathbf{Z}_{i} = \begin{bmatrix} \mathbf{z}_{i3}^{'} & 0 & \cdots & 0 \\ 0 & \mathbf{z}_{i4}^{'} & \vdots \\ \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \mathbf{z}_{iT}^{'} \end{bmatrix}$$

where $\mathbf{z}'_{it} = \begin{bmatrix} y_{i,t-2}, y_{i,t-3}, \dots, y_{i1}, \Delta \mathbf{x}'_{it} \end{bmatrix}$

- Following xtabond help file :
 - Lagged levels of the dependent variable, the predetermined variables, and the endogenous variables are used to form GMM-type instruments.
 - First differences of the strictly exogenous variables are used as standard instruments.
- Lags of x_{it} or Δx_{it} can additionally be used as instruments
 - The number of instruments increases rapidly with T

(1 in
$$t = 3$$
) + (2 in $t = 4$) ... 1, 3, 6, 10...

Arellano-Bond Estimator

• The panel GMM Arellano–Bond AB estimator is $\hat{\beta}_{AB} =$

$$\left[\left(\sum_{i=1}^{N} \tilde{\mathbf{X}}_{i}^{'} \mathbf{Z}_{i}\right) \mathbf{W}_{N}\left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{'} \tilde{\mathbf{X}}_{i}\right)\right]^{-1} \left(\sum_{i=1}^{N} \tilde{\mathbf{X}}_{i}^{'} \mathbf{Z}_{i}\right) \mathbf{W}_{N}\left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{'} \tilde{\mathbf{y}}_{i}\right)$$

where

- $\widetilde{\mathbf{X}}_i \text{ is a } (T-2) \times (K+1) \text{ matrix with } t^{th} \text{ row} \\ \left(\Delta y_{i,t-1}, \Delta \mathbf{x}'_{it} \right), \ T = 3, \dots, T$
- $\tilde{\mathbf{y}}_i$ is a $(T-2) \times 1$ vector with t^{th} row Δy_{it}
- **Z**_{*i*} is the $(T 2) \times r$ matrix of instruments defined previously
- Note the use of levels as instruments for Δ
- Arellano and Bond (AB) (Rev. Ec. Stud., 1991)
 - Built upon Holtz-Eakin, Newey and Rosen (Econometrica, 1988)

Arellano-Bond Estimator

- 2SLS and 2SGMM correspond to different weighting matrices W_N
 - depending error cov mtx, see previous Section
- Arellano-Bond is primarily concerned with lagged y
 - To simplify, we presented x as exogenous
 - But some x could be endogenous
 - Then, they would be treated just like the lag of y
 - The Arellano-Bond can accomodate them
- The Arellano–Bond estimator can be interpreted as specifying a system of equations
 - One eq. per time period following the above Z matrix
 - the instruments applicable to each equation differ
 - It is sometimes called System GMM
 - but that is confusing as other estimators are called that as well

Arellano–Bond estimator in STETE : xtabond

- ▶ stat \rightarrow longitud \rightarrow DPD \rightarrow Arellano-Bond
- Uses only the level instruments
 - that is e.g. $y_{i,t-2}$ as instrument for $\Delta y_{i,t-1}$
- requires no autocorrelation of the level errors ϵ_{it}
 - There is a so-called "two-step estimator"
 - corresponding to 2SGMM based on residuals from the 2SLS estimation (cfr earlier formulas)
 - So this should be more efficient than 2SLS
 - Stata is not very explicit on how it calculates this
 - It is in principle designed to address heteroskedasticity and autocorrelation of the RE type
 - It is accessed with the option twostep

Application: Arellano-Bond estimator

- xtabond n w k ys, lags(1) vce(robust) artests(2)
 - We indicate only the exogenous regressors
 - option lags(1) indicates that one lag of the dependant is used as regr.
 - xtabond automatically includes L1.n in the regressors even if lags(1) is not indicated
 - That is, the lags option allows for the specification of more lags
- Output is + informative than xtivreg
 - # instruments, computation of std.err.

the option vce(xxx)

- specifies the type of standard error reported
 - vce(gmm), default, conventionally derived variance estimator for GMM
 - this is based on iid eit
 - when this is not the case, the information content of the data is lower than iid
 - likely resulting in over-estimated asympt. t-stat (the reported z)
 - vce(robust) uses a robust estimator
 - For the one-step estimator, that is 2SLS, this is the Arellano-Bond robust VCE estimator
 - ▶ For the two-step estimator, this is Windmeijer's (2005)
 - The vce(gmm) is biased for the 2-step
- Large difference when using robust vce
 - But not much differences between 1-step & 2-step

xtabond : Output

Table: Estimation results : 1-step xtabond

Var.	Coef.	Robust Std.Err.	Default Std.Err.	
L.n	0.341	0.125	0.055	
w	-0.504	0.157	0.047	
k	0.295	0.053	0.028	
ys	0.606	0.087	0.050	
Intercept	-0.421	0.735	0.304	

Table: Estimation results : 2-step xtabond

Variable	Coef.	Robust Std.Err.	Default Std.Err.
L.n	0.304	0.107	0.042
W	-0.450	0.112	0.035
k	0.267	0.056	0.036
ys	0.637	0.084	0.060
Intercept	-0.719	0.557	0.328

Default Std.Err. are biased w/ 2-step GMM

option artests(2)

- estat abond : Arellano–Bond test for serial correlation in the first-diff. residuals
 - (post-estimation) diagnostic tool
 - H_0 : ϵ_{it} are iid
- By construction, $\hat{\Delta \epsilon}_{it}$ should be AR(1), so R no AR(1)
 - but if H₀ is true
 - $\hat{\Delta\epsilon_{it}}$ should not exhibit significant AR(2) behavior
 - so not R no AR(2)
 - If a significant AR(2) statistic is encountered (p.val < .05)
 - the second lags of endogenous variables will not be valid instruments for their current values
- ► To use w/ the one-step estimator
 - Not computed for the 1-step w/ vce(gmm)
 - ▶ W/ the 2-step model, the residuals are transformed
- ▶ W/ the previous model, p-val AR(1) is .023, AR(2) .575
 - But that is no guarantee that there is no serial correlation

Blundell and Bond: The lagged levels may be poor instruments for first diff variables

- Blundell and Bond (1998) show that the lagged-level instruments in the AB estimator become weak
 - as the autoregressive process becomes too persistent
 - or the ratio of the variance of the panel-level effects α_i to the variance of the idiosyncratic ε_{it} becomes too large.
- They proposed a "system-GMM" estimator that uses moment conditions in which
 - lagged differences are used as instruments for the level equation
 - in addition to the moment conditions of lagged levels as instruments for the differenced equation.
 - ▶ valid only if the initial condition $E[\alpha_i \Delta y_{i2}] = 0$ holds $\forall i$
 - It's like there are 2 eqs, so "system GMM"
 - xtabond often called difference GMM

Generalizations of xtabond in SETE : xtdpdsys

The Blundell and Bond is available as xtdpdsys

- ► stat→longitud→DPD→Arellano-Bover / Blundell-Bond estimation
- Still requires no autocorrelation in the $\Delta \epsilon_{it}$
 - that is : a 2SLS estimator
 - However, Stata supplies a two-step option as for xtabond
 - This estimator may be quite popular

xtdpdsys : Application

- See the AB.do file
 - Compare the xtabond & xtdpdsys estimators
 - On the same model : n L(0/2).(w k) yr1980-yr1984 year
 - Corresponding to the model in Blundell and Bond (1998)
 - automatically includes L1.n in the regressors as w/ xtabond
- The system estimator
 - produces a higher estimate of the coef. on lagged employment
 - this agrees with the results in Blundell and Bond (1998)
 - who show that the system estimator does not have the downward bias that the Arellano–Bond estimator has when the true value is high.
 - xtdpdsys has 7 more instruments than xtabond
 - Since xtdpdsys includes lagged differences of n as instruments for the level equation

xtdpdsys : Output

Variable	xtabond Coef.	Std.Err.	xtdpdsys Coef.	Std.Err.
L.n	0.629	(0.116)	0.822	(0.093)
W	-0.510	(0.190)	-0.543	(0.188)
L.w	0.289	(0.141)	0.370	(0.166)
L2.w	-0.044	(0.077)	-0.073	(0.091)
k	0.356	(0.060)	0.364	(0.066)
L.k	-0.046	(0.070)	-0.122	(0.070)
L2.k	-0.062	(0.033)	-0.090	(0.034)
yr1980	-0.028	(0.017)	-0.031	(0.017)
yr1981	-0.069	(0.029)	-0.072	(0.029)
yr1982	-0.052	(0.042)	-0.038	(0.037)
yr1983	-0.026	(0.053)	-0.012	(0.050)
yr1984	-0.009	(0.070)	-0.005	(0.066)
year	0.002	(0.012)	0.006	(0.012)
Intercept	-2.543	(23.979)	-10.592	(23.921)

Dynamic Panel Data Ch 2. Dynamic Linear Panel Models

Arellano-Bond Model

Generalizations of xtabond in Sec: xtdpd

- The xtabond and xtdpdsys estimators still assume uncorrelated e_{it} errors
 - Then the $\Delta \epsilon_{it}$ errors are autocorrelated
 - The one-step default of xtabond and xtdpdsys
 - are 2SLS estimators
 - so, essentially disregards this
 - But allow to estimate a "robust" VCE
 - That might be biased in some cases
 - Their 2SGMM two-step option
 - \blacktriangleright Allows for some autocorrelation of the $\Delta\epsilon_{it}$ errors
- The xtdpd estimator is a similar estimator
 - that allows for some moving-average (auto)correlation in \(\epsilon_{it}\)
 - It also has a 2-step option
 - Meant to be used when the "estat abond" rejects absence of autocorrelation of order 2
 - because in this case, the ϵ_{it} errors are not iid
 - ▶ stat \rightarrow longitud \rightarrow DPD \rightarrow Linear DPD
 - I do not detail that

Generalization of xtabond in State : xtabond2

- David Roodman's contribution
 - install it using findit xtabond2
 - Not available in a menu
 - paper on the course webpage
- Features :
 - ability to specify on how many lags are to be included for the instruments
 - If T is more than 7–8, an unrestricted set of lags will introduce a large number of instruments, with a possible loss of efficiency
 - does not support factor variables
- I also do not detail

This is the end