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Generalized Method of Moments

Introduction
I The previous chapter presented variants of the linear panel

data model with
I a FE or RE (random) intercept and
I strongly exogenous regressors

E [eit |ai , xi1, ..., xiT ] = 0, t = 1, ...,T

I Linear models may relax the strong exogeneity assumption via
I endogenous regressors E [eit |xijt ] 6= 0 for some j
I lagged dependent variables as regressors

I endogenous in a panel context with autocorrelation
I or because of estimation – see later

I Dynamic linear panels treat the 2nd case only
I But use applications of the GMM estimator

I That may also be used to address the 1st case
I We will go through the general GMM first
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GMM in Cross-Sections

Analogy Principle
I GMM estimators based on the analogy principle

I population moment conditions
I lead to sample moment conditions
I are used to estimate parameters

I Classic example of MM
I estimation of the population mean when y is iid with mean µ

I In the population E [y � µ] = 0 by definition
I Replacing E [·] for the population by N�1PN

i=1 (·) for the
sample yields the corresponding sample moment :

1
N

NX

i=1

(yi � µ) = 0

I Solving for µ leads to the estimator µ̂MM = N�1

PN
i=1

yi = ȳ
I The MM estimator of the population mean is the sample mean



Linear Cross-Section Regression
I linear regression model y = x

0
� + u

I x and � are K ⇥ 1 vectors

I Suppose E [u|x ] = 0
I law of iterated expectations

I
K unconditional moment conditions E [xu] = 0

I Thus, when the error has conditional mean zero / is
“exogenous” / orthogonal

E
h
x
⇣
y � x

0
�
⌘i

= 0

I MM estimator = solution to the corresponding K sample
moment conditions

1
N

NX

i=1

xi

⇣
yi � x

0
i �
⌘
= 0

I �̂MM =
⇣P

i x
0

i xi
⌘�1P

i x
0

i yi
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GMM in Cross-Sections

Linear IV

I Endogeneity : E [u|x ] 6= 0
I Assume we have instruments z such that E [u|z ] = 0 and

I The instruments are good
I strongly correlated with the regressors

I dim (z) = dim (x) : exactly one instrument per regressor
I exactly-identified model

I Thus, E [u|z ] = 0 provides K sample moment conditions

I Then �̂MM =
⇣P

i z
0
i xi

⌘�1P
i z

0
i yi is consistent

I while �̂OLS =
⇣P

i x
0

i xi
⌘�1P

i x
0

i yi is inconsistent
I �̂MM is the Instrumental Variable IV estimator

I an application of MM estimation
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Generalized Method of Moments

GMM in Cross-Sections

Additional Moment Restrictions

I additional moments/instruments can improve efficiency
I since they add information to the estimator

I that is relevant (correlated to X )
I but requires adaptation of MM

I Consider that dim (z) > dim (x) : more instruments than
regressors

I The model is said over-identified
I Which ones do we take ? Any selection is arbitrary
I let z1 and z2 be subsets of z such that

dim (z1) = dim (z2) = dim (x)

I Then, �̂MM1 =
⇣
Z

0

1X
⌘�1

Z
0

1Y 6=
⇣
Z

0

2X
⌘�1

Z
0

2Y = �̂MM2
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GMM in Cross-Sections

Additional Moment Restrictions 2

I If we write E
h
Z
⇣
y � X

0
�
⌘i

I the moments conditions as above
I there are more conditions than parameters to estimate

I The GMM estimator chooses �̂ to make the vector of sample
moment conditions 1

N

P
i zi

⇣
yi � x

0
i �
⌘

as small as possible in
quadratic terms

That is �̂GMM minimizes :

QN (�) =

"
1
N

X

i

zi

⇣
yi � x

0
i �
⌘#0

WN

"
1
N

X

i

zi

⇣
yi � x

0
i �
⌘#

where WN is a weighting matrix
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GMM in Cross-Sections

Additional Moment Restrictions 3

I How to choose WN ?
I Let dim (z) = r ; WN is r ⇥ r , sdp and does not depend on �
I Different choices of WN lead to different estimators that are

all consistent
I but have different variances when r > k

I GMM specifies the optimal choice of weighting matrix WN

I depending on the case at hand (number of instruments,
heteroskedasticity, autocorrelation)

I such that �̂GMM has the smallest asymptotic variance

I The exact definition of WN depends on the particular case
I 3 cases for panel
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Generalized Method of Moments

GMM in Linear Panel

The Usual Panel Data Model

I Individual-specific effect ↵i model

yit = ↵i + x
0
it� + ✏it (1)

I xit may include
I both time-varying and time-invariant components
I an intercept

I Some components of the regressors xit are now assumed to be
endogenous

I E [xit (↵i + ✏it)] 6= 0
I This leads to a re-definition of what is FE & RE in the next

slide
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GMM in Linear Panel

Random and Fixed Effects Panel with Endogeneity

I We call RE if 9 instruments Zi s.t.

E
h
Z

0
is (↵i + ✏it)

i
= 08 period s

I Then GMM is applied following the formulas below
I FE if

I it is possible only to find instruments s.t. E
h
Z

0

is✏it
i
= 0 8s

I but E
h
Z

0

is↵i

i
6= 0 for some s at least

I Then ↵i must be eliminated by differencing
I & only the coefficients of the time-varying regressors are

identified
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Generalized Method of Moments

GMM in Linear Panel

Simplification for presentation

I no individual-specific effect ↵i

I xit includes only current-period variable
I The linear panel model becomes

yit = xit� + uit (2)

I Stack (bold) all T observations for the i th individual

yi = Xi� + ui (3)

I The estimators presented below
I may however include individual-specific effects
I Via a data transformation as in Ch1
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GMM in Linear Panel

Panel GMM Moment Conditions

I Assume a T ⇥ r matrix of instruments Zi

I r � K is the number of instruments
I that satisfy the r moment conditions :

E
h
Z

0
iui

i
= 0 (4)

I The GMM estimator based on these moment conditions
minimizes a quadratic form as above : �̂PGMM =

" 
X

i

X
0
iZi

!
WN

 
X

i

Z
0
iXi

!#�1

 
X

i

X
0
iZi

!
WN

 
X

i

Z
0
iyi

!

I Consistency of this estimator if (4) holds
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GMM in Linear Panel

Case 1. Just-Identified Panel GMM

I Different weighting matrices WN lead to different GMM
estimators

I Except in the just-identified case of r = K , that is
dim (z) = dim (x)

I Exogenous regressors serve as their own instruments
I In this case �̂PGMM simplifies to the IV estimator for any WN

�̂IV = [Z
0
X ]−1Z

0
y

I In the case that all the x are exogenous
I We can have X = Z and so �̂PGMM = �̂OLS
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Generalized Method of Moments

GMM in Linear Panel

Case 2 & 3. Overidentified Panel GMM

I If in addition of the r instruments above
I We can assume that the first lag of each regressor is

uncorrelated with the current error
I then xit�1 is available as additional instruments for xit
I

weak exogeneity / predetermined instruments

I The model is over-identified
I Instead of �̂IV , more efficient estimation is possible using Panel

GMM estimators
I Generalisation using further lags of xt comes to mind

I Clearly, we can have xt endogenous while xt�1 and xt�2

pre-determined
I so that there are more instruments than regressors, without

any external instrument
I We will discuss that in application, it is one of the main

strengths of panel
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Generalized Method of Moments

GMM in Linear Panel

2 optimal Over-identified PGMM Estimators

I Assume no heteroskedasticity and no serial correlation

I �̂2SLS =


X

0
Z
⇣
Z

0
Z
⌘�1

Z
0
X
��1

X
0
Z
⇣
Z

0
Z
⌘�1

Z
0
y

I xtivreg see below
I No such assumption (robust)

I �̂2SGMM =
h
X

0
ZŜ�1Z

0
X
i�1

X
0
ZŜ�1Z

0
y

I ^

S = 1
N

P
i Z

0
i ûi û

0
i Zi is a White-type robust consistent estimate

for the r ⇥ r matrix S = plim

1
N

P
i Z

0
i uiu

0
i Zi

I Two-step GMM since a first-step consistent estimator of �
such as �̂2SLS is needed to form the residuals
ûi = yi � Xi �̂2SLS used to compute Ŝ

I We’ll see later in applications
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GMM in Linear Panel

2SLS reminder

I What does 2-Stage Least-Squares mean ?
I A reminder in cross-section context for simplicity

I 2SLS is a particular application of IV
I That leads to a natural generalization from MM to GMM
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GMM in Linear Panel

Instrumentation equation
I Let the structural equation Y = X� + ✏

I Assume that in X , xk is endogenous
I assume we have one instrument z for xk

I The instrument matrix is Z ,
I identical to X except for the last column in which xk is

replaced by z

I The instrumentation equation

xk = �
0

+ �
1

x
1

+ . . .+ �k�1

xk�1

+ �kz + µ = Z� + µ

I Estimated by LS, the fitted values of xk are
I

x̂k = �̂0 + �̂1x1 + . . .+ �̂k�1xk�1 + �̂kz = Z �̂

I with �̂ =
⇣
Z

0
Z

⌘�1
Z

0
xk

I Thus, x̂k is a valid instrument for xk
I as long as z is a valid instrument for xk
I and the other regressors are exogenous
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2-Step Least-Squares
I Write X̂ , the X mtx in which xk has been replaced by x̂k

I The IV estimator using X̂ is �̂IV =
⇣
X̂

0
X
⌘�1

X̂
0
Y

I Might be a little better than (Z 0
X )�1

Z

0
Y since the

correlation(x̂k , xk) � correlation(z , xk)
I But the main advantage will come later

I This IV estimator is equivalent to an OLS estimation MCO in
2 steps – 2SLS :

1. Estimate by OLS the instrumentation eq. xk = Z� + µ
2. Replace X by X̂ in the structural eq. Y = ⇡X̂ + ⌫

I Estimate by OLS
I ⇡̂2SLS =

⇣
X̂

0
X̂

⌘�1
X̂

0
Y

I Warning:
⇣
X̂

0
X̂

⌘�1
and NOT

⇣
X̂

0
X

⌘�1
as in �̂IV

I Below, it is shown that ⇡̂2SLS = �̂IV =
⇣
X̂

0
X
⌘�1

X̂
0
Y
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GMM in Linear Panel

⇡̂2SLS = �̂IV =
⇣
X̂

0
X
⌘�1

X̂
0
Y : Proof

I First we proove that X̂ = Z
⇣
Z

0
Z
⌘�1

Z
0
X

I Remember
I

Z is X in which xk is replaced by z , the instrument for xk
I

⇣
Z

0
Z

⌘�1
Z

0
xk = �̂ the LS estimate of the instrumentation eq.

I Consider X̂ = Z
⇣
Z

0
Z
⌘�1

Z
0 �

X�k xk
�

I So X̂ =
⇣

Z

⇣
Z

0
Z

⌘�1
Z

0
X�k x̂k

⌘

I So, the last col. of X̂ is x̂k = Z �̂
I Take any other col of X , xj
I Then the jth col of X̂ is also the jth col of Z and is

Z

⇣
Z

0
Z

⌘�1
Z

0
xj

I Consider
⇣
Z

0
Z
⌘�1

Z
0
xj = �̂j

I This is like the OLS estimate of the regression of xj on itself &
the other regressors

I Then, the adjustment is perfect, the residuals are zero
I (the coef of the other regressors are all zero)
I So that Z

⇣
Z

0
Z

⌘�1
Z

0
xj = Z �̂j = xj

I The fitted values are identical to the original values
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GMM in Linear Panel

⇡̂2SLS = �̂IV =
⇣
X̂

0
X
⌘�1

X̂
0
Y : Proof

I This shows that X̂ = Z
⇣
Z

0
Z
⌘�1

Z
0
X

I Then, it is easy to show that

⇡̂
2SLS =

⇣
X̂

0
X̂
⌘�1

X̂
0
Y

=

✓
X

0
Z
⇣
Z

0
Z
⌘�1

Z
0
✓
Z
⇣
Z

0
Z
⌘�1

Z
0
X

◆◆�1

X̂
0
Y

=

✓
X

0
Z
⇣
Z

0
Z
⌘�1

Z
0
X

◆�1

X̂
0
Y

=
⇣
X̂

0
X
⌘�1

X̂
0
Y = �̂IV
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GMM in Linear Panel

2-Step Least-Squares with several instruments

I The last proof also shows the equivalence between
I Our previous formula for �̂2SLS

I �̂2SLS =


X

0
Z

⇣
Z

0
Z

⌘�1
Z

0
X

��1

X

0
Z

⇣
Z

0
Z

⌘�1
Z

0
y

I and the present formula
⇣
X̂

0
X
⌘�1

X̂
0
Y

I (Except that I am not fully consistent with notation)
I Therefore 2SLS is actually IV

I in which the instrument x̂k is obtained from an
instrumentation equation with p instruments

xk = �0 + �1x1 + . . .+ �k�1xk�1 + �k1z1 + . . .+ �kpzp + µ
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GMM in Linear Panel

To sum up �̂PGMM has 3 meanings

1. Just-identified case
I # instruments = # endogenous regressors
I �̂PGMM is �̂IV “one-step”

2. Over-identified & spherical case
I # instruments > # endogenous regressors
I No heteroskedasticity, no autocorrelation
I �̂PGMM is �̂2SLS “2-step”

2.1 LS estimation of the instrumentation equation(s)
2.2 IV estimation using these results

3. Over-identified general case
I �̂PGMM is �̂2SGMM “3-step”

I Same 2 steps as �̂2SLS , construct the weighting mtx ^

S

I Use ^

S

�1 in the general �̂PGMM formula
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GMM in Linear Panel

Panel-Robust Statistical Inference

I �̂PGMM is asymptotically normal
I with a complicated asymptotic variance matrix
I A consistent estimate of that matrix exists

I conditionnally on a choice for WN

I and if independence over i is assumed
I A White-type robust estimate exists

I It yields panel-robust standard errors allowing for both
heteroskedasticity and correlation over time

I That may not be implemented in many packages
I Not in for the general case
I but for some special cases

I Alternatively, the panel bootstrap could be used
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Anderson–Hsiao estimator

Model

I Consider again the individual-specific effect ↵i model (1)

yit = ↵i + x
0
it� + ✏it

where some components of xit are assumed to be endogenous

I E [xit (↵i + ✏it)] 6= 0
I To simplify, take only one regressor xit! xit

I The case when the xit regressor is a lag of the dependant
xit ! yi ,t�1

I is discussed in details in the next section
I So in this section, we focus on xit 6= yi,t�1
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IV estimation

I Consider using xi ,t�1

as instrument for xit
I xi,t�1 “good” instrument since correlated with xit
I Generally, we are willing to assume some autocorrelation of the

xi
I Dangerous if xi is (per individual) I(1)

I xi ,t�1

valid instrument only when it is not correlated with the
error ↵i + ✏it

I We may often assume that xi,t�1 is uncorrelated to ✏it
I in the sense that xi,t�1 is predetermined wrt ✏it

I When xi,t�1 is not correlated to ↵i , this is a RE model
I Else, we are in a FE model

I and then ↵i must be eliminated by differencing as in Ch. 1
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Anderson–Hsiao estimator

Anderson–Hsiao (AH) estimator

I The AH estimator essentially applies the logic of Ch. 1
I using an IV estimator instead of a LS one
I In all cases, it is a 2SLS estimator

I The xi ,t�1

instrument is called internal
I xi,t�2 could also be used
I Generally, lags of a regressor are called internal instruments

I but external instruments, and their lags, may also be used
I we do not consider them here

I Anderson-Hsiao is generally IV regression,
I but Stata has a Panel implementation that is more convenient
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Anderson–Hsiao estimator

AH estimator in

I Requires a list of instruments
I we will only give lags endogenous regressors

I Menu stat!Longitudinal!Endogenous
covariates!Instrumental

I Command xtivreg : 5 different estimators
I detailed below, except be, that is dropped
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Within AH estimator: xtivreg, fe
I Within : transform model (1)

yit = ↵i + x
0
it� + ✏it

using within :

yit � ȳi = (xit � x̄i )
0
� + ✏it � ✏̄i

I We submit yit and xit to
I The transform is automatic

I Estimate by 2SLS
I We supply xi,t�1 as instrument
I But will transform everything
I So that the actual instrument is xi,t�1 � x̄i for the endogenous

regressors
I So time invariant regressors cannot be analysed

I xit � x̄i for the exogenous ones (implicitly)
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Anderson–Hsiao estimator

First-Differences AH estimator: xtivreg, fd
I First-Differences : transform model (1)

yit = ↵i + x
0
it� + ✏it

using 1st diff (D1 or fd):

yit � yi ,t�1

= (xit � xi ,t�1

)
0
� + ✏it � ✏i ,t�1

I 2SLS FD estimator
I Detailed in the next section w/ xit = yi,t�1
I but might be used in this section w/ xit 6= yi,t�1

I If the i are FE without serious correlation issues
I FD 2SLS not as efficient as within 2SLS

I If no endogenous variable is a lagged dependent variable
I and the i are iid RE
I then RE 2SLS is more efficient than FD 2SLS

I However, when these conditions fails, the FD 2SLS may be the
only consistent estimator

I e.g. with a lagged dependent variable
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Random Effects AH estimator : xtivreg, re

I Random effects: transform model (1)

yit = ↵i + x
0
it� + ✏it

using the RE transformation of Ch. 1 :

yit � �̂ȳi =
⇣
1 � �̂

⌘
µ+

⇣
xit � �̂x̄i

⌘0

� + ⌫it

I 2SLS RE, two implementations
I G2SLS from Balestra and Varadharajan-Krishnakumar

(default)
I EC2SLS from Baltagi
I I do not detail, we use the default

I Application is postponed to next section
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Dynamic Panel Data model DPD

Lagged dependent variable

I Regressors include the dependent variable lagged once
I That is the dynamic panel data model DPD

yit = �yi ,t�1

+ x
0
it� + ↵i + ✏it (5)

I Assume |�| < 1
I In applications, that can be tested using (panel) unit-root tests
I ¬R unit root, then yit is a random walk
I Therefore, inference is invalid

I Estimation may be inconsistent as LS/IV assumptions are not
satisfied

I We do not deal with this case in this course
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Dynamic Panel Data model DPD

Interpreting a Dynamic Panel

Correlation Between yit and yi ,t�1
I Time-series correlation in yit

I is induced directly by yi,t�1
I in addition to the indirect effect via ↵i

I These two causes lead to different interpretations of
correlation over time

I From (5) with � = 0
I so that yit = �yi,t�1 + ↵i + ✏it
Cor [yit , yi ,t�1

] = Cor [�yi ,t�1

+ ↵i + ✏it , yi ,t�1

]
= �Cor [yi ,t�1

, yi ,t�1

] + Cor [↵i , yi ,t�1

]

= � +
1 � �

1 + (1 � �)�2

✏ / (1 + �)�2

↵

I The second equality assumes Cor [✏it , yi ,t�1

] = 0
I yi,t�1 is predetermined wrt ✏it

I The third equality is obtained after some algebra
I for the case of RE with ✏it ⇠ iid

⇥
0,�2

✏

⇤
& ↵it ⇠ iid

⇥
0,�2

↵

⇤
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Dynamic Panel Data model DPD

Interpreting a Dynamic Panel

2 possible reasons for correlation between yit and yi ,t�1

I True state dependence
I When correlation over time is due to the causal mechanism

that yi,t�1 last period determines yit this period
I This dependence is relatively large

I if the individual effect ↵i ' 0
I or more generally when �2

↵ is small relative to �2
✏ as then

Cor [yit , yi,t�1] ' �

I Spurious correlation between yit and yi ,t�1

arises even if there
is no causal mechanism

I due to unobserved heterogeneity
I so � = 0
I but nonetheless �̂OLS 6= 0 because

Cor [yit , yi,t�1] = �2
↵/

�
�2
↵ + �2

✏

�
as in Ch. 1

I also due to time-series issues: yit is I(1)
I Not covered in this Ch.



True State Dependence & Unobserved Heterogeneity

I Both extremes permit the correlation to be close to 1
I because either � ! 1 or �2

↵/�
2
✏ ! 0

I However, these 2 explanations give different policy implications
I True state dependence explanation

I Earnings yit are continuously high (or low) over time even after
controlling for regressors xit because future earnings are
determined by past earnings and � is large

I Unobserved heterogeneity explanation
I Actually � is small, but important variables have been omitted

from xit , leading to a high ↵i in each time period
I So that �̂LS appears high

I That is, are people poor (or rich) because
I They were poor (or rich)?

I In that case, poverty may be addressed by transfering money
I Or they have individual characteristics that make them poor?

I In that case, poverty might be better addressed by education
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Inconsistency of Ch. 1 Estimators

I When the regressors include lagged dependent variables
I All the estimators from Ch.1 are inconsistent

I OLS of yit on yi ,t�1

and xit
I Error term (↵i + ✏it), correlated yi,t�1 through ↵i

I Within estimator : yit � ȳi on (yi ,t�1

� ȳi ) and (xit � x̄i ) with
error (✏it � ✏̄i )

I yi,t�1 is correlated with ✏i,t�1 and hence ✏̄i
I Thus, within creates a correlation between regressor and error

I Inconsistency also for the RE estimator from Ch 1
I since RE is based on the transformation yit � �̂ȳi
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Nickel bias

I It has been shown that the bias �̂ � �
I such correlation generates
I on the within estimator of �

I in the DPD model yit = �yi,t�1 + x

0
it� + ↵i + ✏it

I is approximately � (1 + �) / (1 + T ) as n ! 1
I It disappears with long series
I But can be important when T is small
I e.g. with T = 10 and � = 0.5, the bias is �0.167, about 1/3

of the parameter
I Additional regressors

I or additional obs.
I do not remove the bias
I If the additional regressors are correlated with yt�1

I Their estimated coef will also be inconsistent
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First-differences Model

I First-difference the dynamic model (5), t = 2, . . . ,T

yit � yi,t�1 = � (yi,t�1 � yi,t�2) + (xit � xi,t�1)
0
� + (✏it � ✏i,t�1) (6)

I OLS inconsistent because yi ,t�1

is correlated with ✏i ,t�1

I so regressor (yi,t�1 � yi,t�2) correlated with error (✏it � ✏i,t�1)
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First-difference estimator

I First-difference estimator of this model is OLS on
(yit � yi,t�1)� (yi,t�1 � yi,t�2) = � [(yi,t�1 � yi,t�2)� (yi,t�2 � yi,t�3)]

+ (✏it � ✏i,t�1)� (✏i,t�1 � ✏i,t�2)

I The x regressors have been omitted for simplicity
I This D1 estimator is still inconsistent

I as the regressor is correlated with error
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IV estimation
I We have seen the Anderson–Hsiao (AH) IV estimator in the

previous section
I Essentially, use the linear panel transformations

I and apply a 2SLS estimator using the lag of the regressors as
intruments

I Here, we apply it to the DPD model (5)

yit = �yi,t�1 + x
0

it� + ↵i + ✏it

I Consider using yi ,t�2

as instrument for yi ,t�1

I yi,t�2 “good” instrument since correlated with yi,t�1
I because of unobserved heterogeneity or true state dependance

or both
I yi,t�2 valid instrument only when it is not correlated with the

error ↵i + ✏it
I That is not the case since yi,t�2 always contains ↵i

I That is the difference with the previous section
I Thus the AH estimator must be one that removes ↵i
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AH (IV) estimation of the within model

I Within : transform the DPD model (5)

yit = ↵i + yi ,t�1

� + x
0
it� + ✏it

using within (I remove the xit for simplicity):

yit � ȳi = (yi ,t�1

� ȳi ) � + ✏it � ✏̄i

I Clearly, yi ,t�2

, or yi ,t�2

� ȳi
I is an invalid instrument in such a model

I since ✏i,t�2 from the instrument is present in ✏̄i from the error
term
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AH (IV) estimation of the first-differences model

I Reconsider the first-difference dynamic model (6)

yit�yi ,t�1

= � (yi ,t�1

� yi ,t�2

)+(xit � xi ,t�1

)
0
�+(✏it � ✏i ,t�1

)

I Use yi,t�2 as instrument for (yi,t�1 � yi,t�2)
I

yi,t�2 valid instrument since not correlated with (✏it � ✏i,t�1)
I assuming the errors (✏it � ✏i,t�1) are not (too much) serially

correlated
I yi,t�2 “good” instrument since correlated with (yi,t�1 � yi,t�2)

I (yi,t�2 � yi,t�3) would also be a good instrument

I Even if the errors (✏it � ✏i ,t�1

) are serially correlated (AR(1))
I using the third & fourth lags may still be a valid strategy
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application: command xtivreg, fd

I fd for first difference (D1)
I The only AH estimator applicable in DPD model

I Arellano-Bond data set
I loaded from Ch.1 & saved as abdata.dta

I Year = t, n = log of employment, w = log of real wage, k =
log of gross capital, ys = log of industry output, unit = firm
index (i)

I Panel structure : xtset unit year, yearly

I Commands in the ab.do file
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Anderson–Hsiao estimator
I xtivreg n l2.n l(0/1).w l(0/2).(k ys) yr1981-yr1984 (l.n =

l3.n), fd
I l2.n (or L2.n) is a direct way to write lag 2 of y, that is yi,t�2
I l(0/1).w “creates” 2 variables

I w itself (lag “0”)
I lag 1 of w

I l(0/2).(k ys) “creates” 6 variables
I yr1981-yr1984 includes 4 time dummies
I (l.n = l3.n) indicates the list of instruments

I l.n is an endog. regressor
I l3.n is its instrument, but is not a regressor
I Additional endog regr. / instruments are inserted after a space
I All the regressors not specified here are treated as

exogenous/predetermined
I In the output however, the D1 appear

I that is the first diff � caused by the fd option



Estimation results : xtivreg, fd

Variable Coefficient (Std. Err.)
LD.n 1.423 (1.583)
L2D.n -0.165 (0.165)
D.w -0.752 (0.177)
LD.w 0.963 (1.087)
D.k 0.322 (0.147)
LD.k -0.325 (0.580)
L2D.k -0.095 (0.196)
D.ys 0.766 (0.370)
LD.ys -1.362 (1.157)
L2D.ys 0.321 (0.544)
D.yr1981 -0.057 (0.043)
D.yr1982 -0.088 (0.071)
D.yr1983 -0.106 (0.109)
D.yr1984 -0.117 (0.152)
Intercept 0.016 (0.034)
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More Efficient Estimation of First-differences Model

I Using the IV estimator with only the yi ,t�2

instrument is a
just-identified estimator

I It requires availability of 3 periods of data for each individual
I Using additional lags of the dependent variable as instruments

I is more efficient
I Overidentified, estimation by 2SLS (AH)
I or possibly 2SGMM to account for non spherical disturbances
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Which additional lags ?
I With the AH estimator,

I the number of instruments is “decided upon”
I e.g. we use the first 2 lags

I Reconsider the first-difference dynamic model (6)

yit�yi ,t�1

= � (yi ,t�1

� yi ,t�2

)+(xit � xi ,t�1

)
0
�+(✏it � ✏i ,t�1

)

rewritten as �yit = ��yi ,t�1

+�x0
it� +�✏it

I The AH D1 estimator uses yi ,t�2

as instrument for �yi ,t�1

I yi,t�3 could also be used, then we loose a third period of data
I The matrix of instruments Z is then

�
yi,t�2 yi,t�3 �xit

�

I There is then a trade-off between the number of instruments
and the number of periods
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Arellano-Bond view of the instruments

I In period 3 only yi1 is available as an instrument,
I but in period 4 both yi1 and yi2 would be available,

I and so on

I Arellano & Bond suggest using one set of instruments per
period

I To avoid loosing periods of data by introducing further periods
I Arellano & Bond use zeros outside the period

I The zeros are not data, but the resulting instruments still
satisfy the conditions (uncorrelated to errors, correlated to
regressor)

I Each instrument is then relatively weak
I As the zeros damage the correlation
I But overall, we use more information in this way

I So we increase efficiency
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Arellano-Bond matrix of instruments
I The resulting Zi matrix of instruments :

Zi =

2

66664

z0
i3 0 · · · 0

0 z0
i4

...
... . . . 0
0 · · · 0 z0

iT

3

77775

where z0it =
h
yi ,t�2

, yi ,t�3

, . . . , yi1,�x0
it

i

I Following xtabond help file :
I Lagged levels of the dependent variable, the predetermined

variables, and the endogenous variables are used to form
GMM-type instruments.

I First differences of the strictly exogenous variables are used as
standard instruments.

I Lags of xit or �xit can additionally be used as instruments
I The number of instruments increases rapidly with T

I (1 in t = 3) + (2 in t = 4) ... 1, 3, 6, 10...
I So for large enough T , e.g. T � 10, this is cumbersome so we

stop
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Arellano–Bond Estimator
I The panel GMM Arellano–Bond AB estimator is �̂AB =

" 
NX

i=1

X̃
0
iZi

!
WN

 
NX

i=1

Z
0
i X̃i

!#�1

 
NX

i=1

X̃
0
iZi

!
WN

 
NX

i=1

Z
0
i ỹi

!

where
I X̃i is a (T � 2)⇥ (K + 1) matrix with tth row⇣

�yi,t�1,�x
0

it

⌘
, T = 3, . . . ,T

I ỹi is a (T � 2)⇥ 1 vector with tthrow �yit
I Zi is the (T � 2)⇥ r matrix of instruments defined previously
I Note the use of levels as instruments for �

I Arellano and Bond (AB) (Rev. Ec. Stud., 1991)
I Built upon Holtz-Eakin, Newey and Rosen (Econometrica,

1988)
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Arellano–Bond Estimator

I 2SLS and 2SGMM correspond to different weighting matrices
WN

I depending error cov mtx, see previous Section
I Arellano-Bond is primarily concerned with lagged y

I To simplify, we presented x as exogenous
I But some x could be endogenous
I Then, they would be treated just like the lag of y

I The Arellano-Bond can accomodate them
I The Arellano–Bond estimator can be interpreted as specifying

a system of equations
I One eq. per time period following the above Z matrix

I the instruments applicable to each equation differ
I It is sometimes called System GMM

I but that is confusing as other estimators are called that as well
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Arellano–Bond estimator in : xtabond

I stat!longitud!DPD!Arellano-Bond
I Uses only the level instruments

I that is e.g. yi,t�2 as instrument for �yi,t�1

I requires no autocorrelation of the level errors ✏it
I There is a so-called “two-step estimator”

I corresponding to 2SGMM based on residuals from the 2SLS
estimation (cfr earlier formulas)

I So this should be more efficient than 2SLS
I Stata is not very explicit on how it calculates this

I It is in principle designed to address heteroskedasticity and
autocorrelation of the RE type

I It is accessed with the option twostep
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Application: Arellano-Bond estimator

I xtabond n w k ys, lags(1) vce(robust) artests(2)
I We indicate only the exogenous regressors

I option lags(1) indicates that one lag of the dependant is used
as regr.

I xtabond automatically includes L1.n in the regressors even if
lags(1) is not indicated

I That is, the lags option allows for the specification of more
lags

I Output is + informative than xtivreg
I # instruments, computation of std.err.
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the option vce(xxx)

I specifies the type of standard error reported
I vce(gmm), default, conventionally derived variance estimator

for GMM
I this is based on iid ✏it
I when this is not the case, the information content of the data

is lower than iid
I likely resulting in over-estimated asympt. t-stat (the reported

z)
I vce(robust) uses a robust estimator

I For the one-step estimator, that is 2SLS, this is the
Arellano–Bond robust VCE estimator

I For the two-step estimator, this is Windmeijer’s (2005)
I The vce(gmm) is biased for the 2-step

I Large difference when using robust vce
I But not much differences between 1-step & 2-step



xtabond : Output

Table: Estimation results : 1-step xtabond

Var. Coef. Robust Std.Err. Default Std.Err.
L.n 0.341 0.125 0.055
w -0.504 0.157 0.047
k 0.295 0.053 0.028
ys 0.606 0.087 0.050
Intercept -0.421 0.735 0.304

Table: Estimation results : 2-step xtabond

Variable Coef. Robust Std.Err. Default Std.Err.
L.n 0.304 0.107 0.042
w -0.450 0.112 0.035
k 0.267 0.056 0.036
ys 0.637 0.084 0.060
Intercept -0.719 0.557 0.328

Default Std.Err. are biased w/ 2-step GMM
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option artests(2)
I estat abond : Arellano–Bond test for serial correlation in the

first-diff. residuals
I (post-estimation) diagnostic tool
I H0 : ✏it are iid

I By construction, �̂✏it should be AR(1), so R no AR(1)
I but if H0 is true

I �̂✏it should not exhibit significant AR(2) behavior
I so not R no AR(2)

I If a significant AR(2) statistic is encountered (p.val < .05)
I the second lags of endogenous variables will not be valid

instruments for their current values
I To use w/ the one-step estimator

I Not computed for the 1-step w/ vce(gmm)
I W/ the 2-step model, the residuals are transformed

I W/ the previous model, p-val AR(1) is .023, AR(2) .575
I But that is no guarantee that there is no serial correlation
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Blundell and Bond: The lagged levels may be poor
instruments for first diff variables

I Blundell and Bond (1998) show that the lagged-level
instruments in the AB estimator become weak

I as the autoregressive process becomes too persistent
I or the ratio of the variance of the panel-level effects ↵i to the

variance of the idiosyncratic ✏it becomes too large.
I They proposed a “system-GMM” estimator that uses moment

conditions in which
I lagged differences are used as instruments for the level

equation
I in addition to the moment conditions of lagged levels as

instruments for the differenced equation.
I valid only if the initial condition E [↵i�yi2] = 0 holds 8i
I It’s like there are 2 eqs, so “system GMM”

I xtabond often called difference GMM
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Generalizations of xtabond in : xtdpdsys

I The Blundell and Bond is available as xtdpdsys
I stat!longitud!DPD!Arellano-Bover / Blundell-Bond

estimation
I Still requires no autocorrelation in the �✏it

I that is : a 2SLS estimator
I However, Stata supplies a two-step option as for xtabond

I This estimator may be quite popular
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xtdpdsys : Application

I See the AB.do file
I Compare the xtabond & xtdpdsys estimators

I On the same model : n L(0/2).(w k) yr1980-yr1984 year
I Corresponding to the model in Blundell and Bond (1998)
I automatically includes L1.n in the regressors as w/ xtabond

I The system estimator
I produces a higher estimate of the coef. on lagged employment

I this agrees with the results in Blundell and Bond (1998)
I who show that the system estimator does not have the

downward bias that the Arellano–Bond estimator has when
the true value is high.

I xtdpdsys has 7 more instruments than xtabond
I Since xtdpdsys includes lagged differences of n as instruments

for the level equation



xtdpdsys : Output

Variable xtabond Coef. Std.Err. xtdpdsys Coef. Std.Err.
L.n 0.629 (0.116) 0.822 (0.093)
w -0.510 (0.190) -0.543 (0.188)
L.w 0.289 (0.141) 0.370 (0.166)
L2.w -0.044 (0.077) -0.073 (0.091)
k 0.356 (0.060) 0.364 (0.066)
L.k -0.046 (0.070) -0.122 (0.070)
L2.k -0.062 (0.033) -0.090 (0.034)
yr1980 -0.028 (0.017) -0.031 (0.017)
yr1981 -0.069 (0.029) -0.072 (0.029)
yr1982 -0.052 (0.042) -0.038 (0.037)
yr1983 -0.026 (0.053) -0.012 (0.050)
yr1984 -0.009 (0.070) -0.005 (0.066)
year 0.002 (0.012) 0.006 (0.012)
Intercept -2.543 (23.979) -10.592 (23.921)
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Generalizations of xtabond in : xtdpd
I The xtabond and xtdpdsys estimators still assume uncorrelated

✏it errors
I Then the �✏it errors are autocorrelated
I The one-step default of xtabond and xtdpdsys

I are 2SLS estimators
I so, essentially disregards this

I But allow to estimate a “robust” VCE
I That might be biased in some cases

I Their 2SGMM two-step option
I Allows for some autocorrelation of the �✏it errors

I The xtdpd estimator is a similar estimator
I that allows for some moving-average (auto)correlation in ✏it

I It also has a 2-step option
I Meant to be used when the “estat abond” rejects absence of

autocorrelation of order 2
I because in this case, the ✏it errors are not iid

I stat!longitud!DPD!Linear DPD
I I do not detail that
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Generalization of xtabond in : xtabond2

I David Roodman’s contribution
I install it using findit xtabond2

I Not available in a menu
I paper on the course webpage

I Features :
I ability to specify on how many lags are to be included for the

instruments
I If T is more than 7–8, an unrestricted set of lags will

introduce a large number of instruments, with a possible loss
of efficiency

I does not support factor variables
I I also do not detail
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This is the end
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