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Introduction

» The previous chapter presented variants of the linear panel
data model with

» a FE or RE (random) intercept and
» strongly exogenous regressors

E[e,-t\oc,-,x,-l, ...,X,'T] =0,t=1,..., T

» Linear models may relax the strong exogeneity assumption via

» endogenous regressors E[ej|x;:] # 0 for some j
» lagged dependent variables as regressors

> endogenous in a panel context with autocorrelation
> or because of estimation — see later
» Dynamic linear panels treat the 2" case only
» But use applications of the GMM estimator
» That may also be used to address the 1° case
» We will go through the general GMM first
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Analogy Principle

» GMM estimators based on the analogy principle

» population moment conditions
> lead to sample moment conditions
> are used to estimate parameters
» Classic example of MM
» estimation of the population mean when y is iid with mean p
> In the population E [y — u] = 0 by definition
> Replacing E [-] for the population by N=2 3"V _ (.) for the
sample yields the corresponding sample moment :

1 N
NZ ()/i - M) =0
i=1

» Solving for 4 leads to the estimator fipp = N1 Z,N:1 yi=y
» The MM estimator of the population mean is the sample mean



Linear Cross-Section Regression
» linear regression model y = x'8 + u
» x and 3 are K x 1 vectors
» Suppose E [u|x] =0
» law of iterated expectations
» K unconditional moment conditions E [xu] = 0

» Thus, when the error has conditional mean zero / is
“exogenous” / orthogonal

E {x (y —xlﬁﬂ ~0

» MM estimator = solution to the corresponding K sample
moment conditions



Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
L Generalized Method of Moments
L-GMM in Cross-Sections

Linear |V

» Endogeneity : E[u|x] #0
» Assume we have instruments z such that E [u|z] = 0 and
» The instruments are good
> strongly correlated with the regressors
» dim(z) = dim(x) : exactly one instrument per regressor
> exactly-identified model
» Thus, E [u|z] = 0 provides K sample moment conditions
o -1
» Then Sypm = (Z,z;x,-> Z,z;y; is consistent

~ ’ -1 ’ .o .
» while Sors = (Zixl-x,) > X;yi is inconsistent

> By is the
> an application of MM estimation
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Additional Moment Restrictions

» additional moments/instruments can improve efficiency
» since they add information to the estimator
> that is relevant (correlated to X)
» but requires adaptation of MM
» Consider that dim(z) > dim(x) : more instruments than
regressors
» The model is said over-identified
» Which ones do we take ? Any selection is arbitrary

» let z; and 2z be subsets of z such that
dim(z) = dim(z) = dim(x)

Then, By = (z{x)fl ZY # (zz’xf1 ZY = Bumez

v
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Additional Moment Restrictions 2

> If we write E [Z (y—Xlﬁﬂ

» the moments conditions as above
» there are more conditions than parameters to estimate

» The GMM estimator chooses 3 to make the vector of sample
moment conditions % >z (y,- — x;ﬂ> as small as possible in
quadratic terms

That is Bgypm minimizes :

/1/2;2" (y; - X;ﬁ)] Wy

where Wy, is a weighting matrix

Qn (B) =

v i)
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Additional Moment Restrictions 3

» How to choose Wy ?

» Let dim(z) =r; Wy is r x r , sdp and does not depend on
» Different choices of W)y, lead to different estimators that are
all consistent

» but have different variances when r > k
» GMM specifies the optimal choice of weighting matrix Wy

> depending on the case at hand (number of instruments,
heteroskedasticity, autocorrelation)
> such that SBeum has the smallest asymptotic variance

» The exact definition of Wy depends on the particular case

» 3 cases for panel
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The Usual Panel Data Model

» Individual-specific effect o; model
Vit = aj + X/,-tﬂ + €t (1)

» x; may include
> both time-varying and time-invariant components
> an intercept

» Some components of the regressors x;; are now assumed to be
endogenous
» E[xit (i +e€x)] #0
» This leads to a re-definition of what is FE & RE in the next
slide
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Random and Fixed Effects Panel with Endogeneity

» We call RE if 3 instruments Z; s.t.

E [Z,-ls (i + eit)} = 0V period s

» Then GMM is applied following the formulas below

» FE if
> it is possible only to find instruments s.t. E [Z,-lse,-t] =0Vs

» but E [Zi;a;] # Ofor some s at least

» Then «; must be eliminated by differencing

> & only the coefficients of the time-varying regressors are
identified
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Simplification for presentation

» no individual-specific effect o;
» x;: includes only current-period variable
» The linear panel model becomes
Vit = Xit B + ujr
» Stack (bold) all T observations for the i*/ individual
yi = XiB +u;
» The estimators presented below

» may however include individual-specific effects
» Via a data transformation as in Chl
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Panel GMM Moment Conditions

» Assume a T X r matrix of instruments Z;

» r > K is the number of instruments
» that satisfy the r moment conditions :

E|Zui] =0 (4)

» The GMM estimator based on these moment conditions
minimizes a quadratic form as above : Bpcym =

(sxa)w(s2m)] (50w (2

» Consistency of this estimator if (4) holds
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Case 1. Just-ldentified Panel GMM

» Different weighting matrices Wy, lead to different GMM
estimators
» Except in the just-identified case of r = K, that is
dim(z) = dim(x)
» Exogenous regressors serve as their own instruments
» In this case Bpcum simplifies to the IV estimator for any Wy
PAY / —1 /
Bv=[ZX|"Zy
» In the case that all the x are exogenous

» We can have X = Z and so ﬁPGM/\/j = BOLS
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Case 2 & 3. Overidentified Panel GMM

» If in addition of the r instruments above
» We can assume that the first lag of each regressor is
uncorrelated with the current error
> then x;;—1 is available as additional instruments for x;;
> weak exogeneity / predetermined instruments

» The model is over-identified

» Instead of ), more efficient estimation is possible using Panel
GMM estimators
» Generalisation using further lags of x, comes to mind

> Clearly, we can have x; endogenous while x;—1 and x;—»
pre-determined

> so that there are more instruments than regressors, without
any external instrument

> We will discuss that in application, it is one of the main
strengths of panel
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2 optimal Over-identified PGMM Estimators

» Assume no heteroskedasticity and no serial correlation
~ ’ ’ -1 ’ -1 ’ ’ -1 ’
> Bosis = [xz(zz) zx} xz(zz) Zy
» BEIE] xtivreg see below

» No such assumption (robust)
~ !y A ’ -1 [N ’
> Bosciim = [x yARRY A x} X'2817'y
» §= % > Z,/-(],-(];Z,- is a White-type r(/)bus;t consistent estimate
for the r x r matrix S = plim% >, Z;uiu; Z;
» Two- step GMM since a first-step consistent estimator of 3
such as 525L5 is needed to form the residuals
0=y, — ,525L5 used to compute §
> m We'll see later in applications
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2SLS reminder

» What does 2-Stage Least-Squares mean ?
» A reminder in cross-section context for simplicity
» 2SLS is a particular application of IV
» That leads to a natural generalization from MM to GMM
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Instrumentation equation

» Let the structural equation Y = X8+ €
» Assume that in X, xx is endogenous
> assume we have one instrument z for x
» The instrument matrix is Z,
> identical to X except for the last column in which x is
replaced by z

» The instrumentation equation
Xk =00+ 01x1 + ... F0k_1Xk—1+0kz+ =20+

» Estimated by LS, the fitted values of x, are
> R = b0+ bixa +_-1- Ok 1Xk—1 + Oz = Z6
> with § = (Z’z) 7' %

» Thus, X is a valid instrument for x

> as long as z is a valid instrument for x
> and the other regressors are exogenous
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2-Step Least-Squares
» Write X, the X mtx in which x, has been replaced by %
A ~ A -1 i
» The IV estimator using X is By = (X X) XY

> Might be a little better than (Z'X)™" Z'Y since the
correlation(R, xx) > correlation(z, x)
» But the main advantage will come later

» This IV estimator is equivalent to an OLS estimation MCO in
2 steps — 2SLS :

1. Estimate by OLS the instrumentation eq. x, = Z0 +

2. Replace X by X in the structural eq. Y = 7X + v
» Estimate by OLS

AL A -1 AL
> fasis = (X X) X'y
AL A 71 AL 71 ~
» Warning: (X X) and NOT (X X) as in B

~ i -1 A
» Below, it is shown that 75,5 = B)y = (X X) XY
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A o -1 .,
Tosts = Biv = (X X) XY : Proof

N L N1,
» First we proove that X = Z (Z Z) Z X

» Remember
> Zis X in which xi is replaced by z, the instrument for x

’ 71 ’ ~
> (Z Z) Z xx = 6 the LS estimate of the instrumentation eq.
A ’ -1 ’
> Consider X =Z(Z'2)  Z'( Xk )
A / 71 /7
SOX:(Z(ZZ) Zx %)
So, the last col. of X is % = Z§

Take any other col of X, x;
Then the jth col of X is also the jth col of Z and is

z (z/z) 7

v

vvyy

’ -1 ’
> Consider (Z'Z)  Z'xj=7;
> This is like the OLS estimate of the regression of x; on itself &

the other regressors
» Then, the adjustment is perfect, the residuals are zero
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|

A oY -1 .,
frasis = B = (X X) K'Y - Proof

!

. o\ -1
» This shows that X = 7 (z z) 7

» Then, it is easy to show that

X

fosts =

>
N X

( .
( )_1 7z (z_(lz’z) B z’x)) Xy
_ <(x’z (_z’z)_ ZX) Xy
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2-Step Least-Squares with several instruments

» The last proof also shows the equivalence between
» Our previous formula for B2SL$
~ ’ ’ -1 ! -1 ’ ’ -1 !
> Pasis = {xz(zz) zx] Xz(22) Zy

A -1 A7
» and the present formula (X X) XY

> (Except that | am not fully consistent with notation)
» Therefore 2SLS is actually IV

» in which the instrument X is obtained from an
instrumentation equation with p instruments

Xe =00+ 01x1 + ...+ Ok—1Xk—1 + k121 + ...+ OkpZp + 1
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To sum up Bpgmm has 3 meanings

1. Just-identified case
> # instruments = # endogenous regressors
> Bpemm is By “one-step”

2. Over-identified & spherical case
> # instruments > # endogenous regressors
» No heteroskedastlaty, no autocorrelation

> Bpemm is Bass “2-step’”
2.1 LS estimation of the instrumentation equation(s)
2.2 |V estimation using these results

3. Over-identified general case
> Bpemm is Basemm “3-step”

> Same 2 steps as /3’25L5, construct the weighting mtx S
> Use §71 in the general Bpeumm formula
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Panel-Robust Statistical Inference

» Bpcmm is asymptotically normal

» with a complicated asymptotic variance matrix
» A consistent estimate of that matrix exists

» conditionnally on a choice for Wy
» and if independence over i is assumed
» A White-type robust estimate exists

» It yields panel-robust standard errors allowing for both
heteroskedasticity and correlation over time
» That may not be implemented in many packages

> Not in EXEIE] for the general case

> but for some special cases

» Alternatively, the panel bootstrap could be used
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Model

» Consider again the individual-specific effect a; model (1)
Yie = @i+ X8 + €t

where some components of x;; are assumed to be endogenous

> E[xie (i +€ir)] #0
» To simplify, take only one regressor x;— x;;
» The case when the x;; regressor is a lag of the dependant
Xit = Yijt—1
» is discussed in details in the next section
» So in this section, we focus on xj # yi¢—1



Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
L Generalized Method of Moments

L Anderson—Hsiao estimator

[V estimation

» Consider using x; +—1 as instrument for x;;
> Xj¢—1 good” instrument since correlated with x;
» Generally, we are willing to assume some autocorrelation of the
Xi
» Dangerous if x; is (per individual) 1(1)
> X; t—1 valid instrument only when it is not correlated with the
error «; + €+
» We may often assume that x; ;_1 is uncorrelated to €
> in the sense that x;;—1 is predetermined wrt €;;

» When x;;_1 is not correlated to «;, this is a RE model
» Else, we are in a FE model

> and then «; must be eliminated by differencing as in Ch. 1
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Anderson—Hsiao (AH) estimator

» The AH estimator essentially applies the logic of Ch. 1
» using an |V estimator instead of a LS one
» In all cases, it is a 2SLS estimator

» The x; ;—1 instrument is called internal

> X ¢+—2 could also be used
» Generally, lags of a regressor are called internal instruments

> but external instruments, and their lags, may also be used
> we do not consider them here
» Anderson-Hsiao is generally IV regression,
» but Stata has a Panel implementation that is more convenient
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AH estimator in BEIE]

» Requires a list of instruments
» we will only give lags endogenous regressors
» Menu stat—Longitudinal+Endogenous
covariates—Instrumental
» Command xtivreg : 5 different estimators
» detailed below, except be, that is dropped
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Within AH estimator: xtivreg, fe

» Within : transform model (1)
Yie = aj + Xip3 + €ie
using within :
Yie = % = (xie = %) B+ €ie — &

» We submit y;; and x;; to STata
> The transform is automatic
» Estimate by 2SLS
» We supply x;¢—1 as instrument
» But EXELE] will transform everything
» So that the actual instrument is x; :—1 — X; for the endogenous
regressors
> So time invariant regressors cannot be analysed

» x; — X; for the exogenous ones (implicitly)
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First-Differences AH estimator: xtivreg, fd
» First-Differences : transform model (1)
Yie = @i + X3 + €t
using 1st diff (D1 or fd):

Vit — Yit—1 = (Xit = Xijt—1) B+ €ir —€i¢—1
» 2SLS FD estimator
» Detailed in the next section w/ xjx = yi+—1
» but might be used in this section w/ xjt # yj +—1
» If the / are FE without serious correlation issues
» FD 2SLS not as efficient as within 2SLS
» If no endogenous variable is a lagged dependent variable
» and the / are iid RE
» then RE 2SLS is more efficient than FD 2SLS
» However, when these conditions fails, the FD 2SLS may be the
only consistent estimator
» e.g. with a lagged dependent variable
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Random Effects AH estimator : xtivreg, re
» Random effects: transform model (1)
Yie = i + X3 + €it

using the RE transformation of Ch. 1:

Yie — AVi = (1 - 5\) p+ (Xit - 5\>_<i) B+ vit

» 2SLS RE, two implementations

» G2SLS from Balestra and Varadharajan-Krishnakumar
(default)

» EC2SLS from Baltagi

» | do not detail, we use the default

» Application is postponed to next section
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Lagged dependent variable

» Regressors include the dependent variable lagged once
» That is the dynamic panel data model

Vit = VWit-1+ X + i + € (5)

» Assume |y| <1

» In applications, that can be tested using (panel) unit-root tests
» =R unit root, then y;; is a random walk
» Therefore, inference is invalid
> Estimation may be inconsistent as LS/IV assumptions are not
satisfied
> We do not deal with this case in this course
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Correlation Between yj; and yi ;1

» Time-series correlation in y;;
> is induced directly by y; ;1
» in addition to the indirect effect via «;
» These two causes lead to different interpretations of
correlation over time

» From (5) with 5 =0
> so that yir = 7yie—1 + @ + €it
Cor lyit, yit—1] = Cor [yyit—1+ i + €it, Yit—1]
= vCor [y ,t—1, Yi,t—1] + Cor [, yi t—1]
o 1—9
TR A=/ A+ )R
» The second equality assumes Cor [€j¢, yit—1] =0
> Yit—1 is predetermined wrt €;
» The third equality is obtained after some algebra
> for the case of RE with € ~ iid [0,02] & aj¢ ~ iid [0, 02]
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2 possible reasons for correlation between y;; and y; 1

» True state dependence

» When correlation over time is due to the causal mechanism
that y; ;1 last period determines y;: this period
» This dependence is relatively large

» if the individual effect o; ~ 0
» or more generally when o2 is small relative to o2 as then
Cor [yie, yi,e—1] = v
» Spurious correlation between y;: and y; ;1 arises even if there
is no causal mechanism
» due to unobserved heterogeneity
» soy=0
> but nonetheless Yors # 0 because
Cor yit, yit—1] = 02/ (03 + 02) asin Ch. 1
» also due to time-series issues: y;; is (1)
> Not covered in this Ch.



True State Dependence & Unobserved Heterogeneity

» Both extremes permit the correlation to be close to 1
» because either v — 1 or 02 /02 — 0
» However, these 2 explanations give different policy implications
» True state dependence explanation
» Earnings y;: are continuously high (or low) over time even after
controlling for regressors x;; because future earnings are
determined by past earnings and « is large
» Unobserved heterogeneity explanation

» Actually v is small, but important variables have been omitted
from x;;, leading to a high «; in each time period

> So that 415 appears high
» That is, are people poor (or rich) because
» They were poor (or rich)?
> In that case, poverty may be addressed by transfering money
» Or they have individual characteristics that make them poor?
> In that case, poverty might be better addressed by education
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Inconsistency of Ch. 1 Estimators

» When the regressors include lagged dependent variables
» All the estimators from Ch.1 are inconsistent
» OLS of y;; on y; +—1 and x;;
» Error term (v + €;¢), correlated y; ;—1 through «;
» Within estimator : yjr — ¥ on (yit—1 — ¥i) and (x; — X;) with
error (€jx — €)
> yit—1 is correlated with € ;1 and hence &;
» Thus, within creates a correlation between regressor and error
» Inconsistency also for the RE estimator from Ch 1
» since RE is based on the transformation y;; — 5\)7,-
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- Interpreting a Dynamic Panel

Nickel bias

> It has been shown that the bias 4 — ~

» such correlation generates
» on the within estimator of v

> in the DPD model yir = 7yyi -1 + x;t/B + ai + €

> is approximately —(14++v)/(1+ T) as n— oo
> It disappears with long series
> But can be important when T is small

» e.g. with T =10 and v = 0.5, the bias is —0.167, about 1/3
of the parameter

» Additional regressors
» or additional obs.
» do not remove the bias
» If the additional regressors are correlated with y;_1

» Their estimated coef will also be inconsistent
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First-differences Model

» First-difference the dynamic model (5), t=2,..., T

Yie = Yie—1 =7 (Vie—1 — Yie—2) + (Xie — Xie—1) B+ (€ie — €ie—1)  (6)

» OLS inconsistent because y; ;1 is correlated with €; ;1
» so regressor (yj(—1 — yit—2) correlated with error (ej; — €; 1)



Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
LDynamic Panel Data model DPD
L First-differences Model

First-difference estimator

» First-difference estimator of this model is OLS on

(vie = yie-1) = (Viem1 — Yie—2) =V [(Vie-1 — Yie—2) — (Vie—2 — ¥ie—3)]
+ (et — €ie—1) — (€i,e—1 — €ie—2)
» The x regressors have been omitted for simplicity
» This D1 estimator is still inconsistent
> as the regressor is correlated with error
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L Anderson—Hsiao estimator

[V estimation

» We have seen the Anderson—Hsiao (AH) IV estimator in the
previous section
» Essentially, use the linear panel transformations
> and apply a 2SLS estimator using the lag of the regressors as
intruments
» Here, we apply it to the DPD model (5)

Yie = Vit—1 + X B+ aj + €

» Consider using y; +—» as instrument for y; ;1
> Yit—2 ‘good” instrument since correlated with y; ;_1
> because of unobserved heterogeneity or true state dependance
or both
> yit—2 valid instrument only when it is not correlated with the
error a; + €j¢
> That is not the case since y; :—> always contains «;
» That is the difference with the previous section

» Thus the AH estimator must be one that removes «;
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LAnderson—Hsiao estimator

AH (1V) estimation of the within model

» Within : transform the DPD model (5)
Yie = Qi+ Yito17 + X3 + €ir
using within (I remove the x;; for simplicity):
Vit = Vi = (Yijt—1 — Vi) v + €ir — €
> Clearly, yit—2, or yit—2— yi

» is an invalid instrument in such a model

> since €j,:—2 from the instrument is present in & from the error
term
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L Anderson—Hsiao estimator

AH (1V) estimation of the first-differences model

» Reconsider the first-difference dynamic model (6)
YiewYijt—1 =7 (Vie—1 — Yie—2)+(Xie — Xie—1) B+(€ir — €i,0-1)

» Use y; :—2 as instrument for (i -1 — Yit—2)
> yi¢—2 valid instrument since not correlated with (e;x — €j,¢—1)
> assuming the errors (e — €;:—1) are not (too much) serially
correlated

> yit—2 ‘good” instrument since correlated with (yi:—1 — ¥i+—2)
> (Yit—2 — Yi,t—3) would also be a good instrument
» Even if the errors (ejx — € ¢—1) are serially correlated (AR(1))
» using the third & fourth lags may still be a valid strategy
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LAnderson—Hsiao estimator

BEIE] application: command xtivreg, fd

» fd for first difference (D1)
» The only AH estimator applicable in DPD model
» Arellano-Bond data set
» loaded from Ch.1 & saved as abdata.dta
> Year = t, n = log of employment, w = log of real wage, k =
log of gross capital, ys = log of industry output, unit = firm
index (i)
> Panel structure : xtset unit year, yearly

» Commands in the ab.do file
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Anderson—Hsiao estimator

» xtivreg n 12.n 1(0/1).w 1(0/2).(k ys) yr1981-yr1984 (I.n =
13.n), fd

» 12.n (or L2.n) is a direct way to write lag 2 of y, that is y; ;>
» 1(0/1).w "creates”’ 2 variables
> w itself (lag “0")
> lag 1 of w
» 1(0/2).(k ys) “creates” 6 variables
» yr1981-yr1984 includes 4 time dummies

v

(I.n = 13.n) indicates the list of instruments

I.n is an endog. regressor

I3.n is its instrument, but is not a regressor

Additional endog regr. / instruments are inserted after a space
All the regressors not specified here are treated as
exogenous/predetermined

vVvyyyewy

» In the output however, the D1 appear
» that is the first diff A caused by the fd option



Estimation results : xtivreg, fd

Variable Coefficient (Std. Err.)

[D.n 1.423 (1.583)
L2D.n -0.165 (0.165)
D.w -0.752 (0.177)
LD.w 0.963 (1.087)
D.k 0.322 (0.147)
LD .k -0.325 (0.580)
L2D k -0.095 (0.196)
D.ys 0.766 (0.370)
LD.ys 11.362 (1.157)
L2D.ys 0.321 (0.544)
Dyrl98l  -0.057 (0.043)
D.yr1982  -0.088 (0.071)
D.yr1083  -0.106 (0.109)
D.yrlo84  -0.117 (0.152)
Intercept 0.016 (0.034)
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More Efficient Estimation of First-differences Model

> Using the IV estimator with only the y; ;> instrument is a
just-identified estimator

» It requires availability of 3 periods of data for each individual
» Using additional lags of the dependent variable as instruments

» is more efficient
» Overidentified, estimation by 2SLS (AH)
» or possibly 2SGMM to account for non spherical disturbances
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Which additional lags ?

» With the AH estimator,
» the number of instruments is “decided upon”
> e.g. we use the first 2 lags

» Reconsider the first-difference dynamic model (6)
Yite—Yit—1 =7 (Vit—1 — Yi.t—2)+(Xie — Xj t—1) B+(€ir — €j¢—1)

rewritten as Ay = YAy -1 + Ax;-tﬁ + A€jp
» The AH D1 estimator uses y; ;— as instrument for Ay; ;1
> yit—3 could also be used, then we loose a third period of data
» The matrix of instruments Z is then

( Yie—2 Yie-s Dxi)

» There is then a trade-off between the number of instruments
and the number of periods
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Arellano-Bond view of the instruments

> In period 3 only y;; is available as an instrument,
» but in period 4 both y;; and y;» would be available,
> and so on

» Arellano & Bond suggest using one set of instruments per
period
» To avoid loosing periods of data by introducing further periods
» Arellano & Bond use zeros outside the period
> The zeros are not data, but the resulting instruments still
satisfy the conditions (uncorrelated to errors, correlated to
regressor)
» Each instrument is then relatively weak
» As the zeros damage the correlation
» But overall, we use more information in this way
> So we increase efficiency
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Arellano-Bond matrix of instruments

» The resulting Z; matrix of instruments :

z; 0 0
Z, - 0 z,
S
0 0 zp

where 7/, = [yi,t—2a)/i,t—3> e Yils AX:-t]
» Following xtabond help file :
> Lagged levels of the dependent variable, the predetermined
variables, and the endogenous variables are used to form
GMM-type instruments.
> First differences of the strictly exogenous variables are used as
standard instruments.
» Lags of x;; or Ax;; can additionally be used as instruments
» The number of instruments increases rapidly with T
» (1int=3)+R2int=4)...1 3 6, 10...
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Arellano—Bond Estimator

» The panel GMM Arellano—Bond AB estimator is fag =

N N -1/ N N
(Sxijw (Y2 )| (k) w325
i=1 i=1 i=1 i=1

where
» Xjisa (T —2) x (K +1) matrix with t*h row
(Ay,-,t_l,ij.t) L T=3,...,T
> §;isa (T —2) x 1 vector with t'row Ay;,
» Z;is the (T — 2) x r matrix of instruments defined previously
» Note the use of levels as instruments for A

» Arellano and Bond (AB) (Rev. Ec. Stud., 1991)

» Built upon Holtz-Eakin, Newey and Rosen (Econometrica,
1988)
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Arellano—Bond Estimator

» 2SLS and 2SGMM correspond to different weighting matrices
Wi
» depending error cov mtx, see previous Section
» Arellano-Bond is primarily concerned with lagged y

» To simplify, we presented x as exogenous
» But some x could be endogenous
» Then, they would be treated just like the lag of y

> The Arellano-Bond can accomodate them
» The Arellano—Bond estimator can be interpreted as specifying
a system of equations
» One eq. per time period following the above Z matrix
> the instruments applicable to each equation differ
» It is sometimes called System GMM
> but that is confusing as other estimators are called that as well
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Arellano—Bond estimator in BEIE] : xtabond

» stat—longitud—DPD—Arellano-Bond
» Uses only the level instruments
> that is e.g. yj;—> as instrument for Ay; ;1
» requires no autocorrelation of the level errors €;;
» There is a so-called “two-step estimator”
> corresponding to 2SGMM based on residuals from the 2SLS
estimation (cfr earlier formulas)
» So this should be more efficient than 2SLS
» Stata is not very explicit on how it calculates this
> It is in principle designed to address heteroskedasticity and
autocorrelation of the RE type
> It is accessed with the option twostep



Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
LDynamic Panel Data model DPD
L Arellano-Bond Model

Application: Arellano-Bond estimator

» xtabond n w k ys, lags(1) vce(robust) artests(2)
» We indicate only the exogenous regressors
> option lags(1) indicates that one lag of the dependant is used
as regr.
» xtabond automatically includes L1.n in the regressors even if
lags(1) is not indicated
> That is, the lags option allows for the specification of more
lags
» Output is + informative than xtivreg
» # instruments, computation of std.err.
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the option vce(xxx)

» specifies the type of standard error reported

» vce(gmm), default, conventionally derived variance estimator
for GMM
> this is based on iid €;;
» when this is not the case, the information content of the data
is lower than iid
> likely resulting in over-estimated asympt. t-stat (the reported
z)
» vce(robust) uses a robust estimator
> For the one-step estimator, that is 2SLS, this is the
Arellano—Bond robust VCE estimator
> For the two-step estimator, this is Windmeijer's (2005)
> The vce(gmm) is biased for the 2-step

» Large difference when using robust vce
» But not much differences between 1-step & 2-step



xtabond : Output

Table: Estimation results : 1-step xtabond

Var. Coef. Robust Std.Err. Default Std.Err.

L.n 0.341 0.125 0.055
w -0.504 0.157 0.047
k 0.295 0.053 0.028
ys 0.606 0.087 0.050
Intercept -0.421 0.735 0.304

Table: Estimation results : 2-step xtabond

Variable Coef. Robust Std.Err. Default Std.Err.

L.n 0.304 0.107 0.042
w -0.450 0.112 0.035
k 0.267 0.056 0.036
ys 0.637 0.084 0.060
Intercept -0.719 0.557 0.328

Default Std.Err. are biased w/ 2-step GMM



Dynamic Panel Data Ch 2. Dynamic Linear Panel Models
LDynamic Panel Data model DPD
L Arellano-Bond Model

option artests(2)

» estat abond : Arellano—Bond test for serial correlation in the
first-diff. residuals
» (post-estimation) diagnostic tool
» Hy : €j are iid
» By construction, Ae;; should be AR(1), so R no AR(1)
» but if Hp is true

» Ae;r should not exhibit significant AR(2) behavior
> so not R no AR(2)

» If a significant AR(2) statistic is encountered (p.val < .05)

> the second lags of endogenous variables will not be valid
instruments for their current values

» To use w/ the one-step estimator
» Not computed for the 1-step w/ vce(gmm)
» W/ the 2-step model, the residuals are transformed

» W/ the previous model, p-val AR(1) is .023, AR(2) .575
» But that is no guarantee that there is no serial correlation
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Blundell and Bond: The lagged levels may be poor
instruments for first diff variables

» Blundell and Bond (1998) show that the lagged-level
instruments in the AB estimator become weak
» as the autoregressive process becomes too persistent
> or the ratio of the variance of the panel-level effects «; to the
variance of the idiosyncratic €; becomes too large.
» They proposed a “system-GMM" estimator that uses moment
conditions in which
» lagged differences are used as instruments for the level
equation
> in addition to the moment conditions of lagged levels as
instruments for the differenced equation.
» valid only if the initial condition E[a;Ay;2] = 0 holds Vi
> It's like there are 2 egs, so “system GMM"
» xtabond often called difference GMM
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Generalizations of xtabond in BEIE] : xtdpdsys

» The Blundell and Bond is available as xtdpdsys
» stat—longitud—DPD—Arellano-Bover / Blundell-Bond
estimation
» Still requires no autocorrelation in the Aej;
» that is : a 25LS estimator
» However, Stata supplies a two-step option as for xtabond
» This estimator may be quite popular
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xtdpdsys : Application

» See the AB.do file
» Compare the xtabond & xtdpdsys estimators
> On the same model : n L(0/2).(w k) yr1980-yr1984 year
> Corresponding to the model in Blundell and Bond (1998)
> automatically includes L1.n in the regressors as w/ xtabond
» The system estimator
» produces a higher estimate of the coef. on lagged employment
> this agrees with the results in Blundell and Bond (1998)
> who show that the system estimator does not have the
downward bias that the Arellano—Bond estimator has when
the true value is high.
» xtdpdsys has 7 more instruments than xtabond

> Since xtdpdsys includes lagged differences of n as instruments
for the level equation



xtdpdsys : Output

Variable xtabond Coef. Std.Err. xtdpdsys Coef. Std.Err.

L.n 0.629 (0.116) 0.822 (0.093)
w -0.510 (0.190) -0.543 (0.188)
L.w 0.289 (0.141) 0.370 (0.166)
L2.w -0.044 (0.077) -0.073 (0.091)
k 0.356 (0.060) 0.364 (0.066)
L.k -0.046 (0.070) 0.122 (0.070)
L2.k -0.062 (0.033) -0.090 (0.034)
yr1980 10.028 (0.017) -0.031 (0.017)
yr1981 -0.069 (0.029) -0.072 (0.029)
yr1982 -0.052 (0.042) -0.038 (0.037)
yr1983 -0.026 (0.053) -0.012 (0.050)
yr1084 -0.009 (0.070) -0.005 (0.066)
year 0.002 (0.012) 0.006 (0.012)

Intercept -2.543 (23.979) -10.592 (23.921)
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Generalizations of xtabond in BEIE] : xtdpd

» The xtabond and xtdpdsys estimators still assume uncorrelated
€jr €rrors
» Then the Agj; errors are autocorrelated
» The one-step default of xtabond and xtdpdsys
> are 2SLS estimators
> so, essentially disregards this
» But allow to estimate a “robust” VCE
» That might be biased in some cases
» Their 2SGMM two-step option
> Allows for some autocorrelation of the Ae;: errors
» The xtdpd estimator is a similar estimator
» that allows for some moving-average (auto)correlation in €
> It also has a 2-step option
» Meant to be used when the “estat abond” rejects absence of
autocorrelation of order 2
» because in this case, the ¢;; errors are not iid
» stat—longitud—DPD—Linear DPD
» | do not detail that
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Generalization of xtabond in BEIA : xtabond?2

» David Roodman's contribution
» install it using findit xtabond?2
> Not available in a menu
» paper on the course webpage
» Features :

» ability to specify on how many lags are to be included for the
instruments

> If T is more than 7-8, an unrestricted set of lags will
introduce a large number of instruments, with a possible loss
of efficiency

» does not support factor variables

» | also do not detail
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This is the end
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